Concept explainers
(a)
The frequency heard by the passengers in the car.
(a)
Answer to Problem 17.71CP
The frequency heard by the passengers in the car is
Explanation of Solution
Given info: The speed of the train is
Consider the following figure.
Figure (1)
In right angle triangle
Substitute
The value of the
In triangle
Substitute
The value of the
The expression for the frequency heard by the passengers in the car is,
Here,
Substitute
Conclusion:
Therefore the frequency heard by the passengers in the car is
(b)
The range of frequencies heard by the passenger in the car.
(b)
Answer to Problem 17.71CP
The range of frequencies heard by the passenger in the car is
Explanation of Solution
Given info: The speed of the train is
Since the observer and source are moving away from each other so the value of the angles becomes equal to zero.
The expression for the frequency heard by the passengers in the car is,
For the case when the train is arrived:
Substitute
For the case when train is arriving:
Substitute
Conclusion:
Therefore the range of frequencies heard by the passenger in the car is
(c)
The frequency heard by the passengers in the car.
(c)
Answer to Problem 17.71CP
The frequency heard by the passengers in the car is
Explanation of Solution
Given info: The speed of the train is
The expression for the frequency heard by the passengers in the car is,
Substitute
Conclusion:
Therefore the frequency heard by the passengers in the car is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Math 57arrow_forwardPoint charges q1 = 50 µC and q2 = −25 µC are placed 1.0 m apart. What is the magnitude of the force on a third charge q3 = 40 µC placed midway between q1 and q2? (The prefix µ =10−6 C.)arrow_forwardThe de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processesarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning