Concept explainers
In Section 16.7, we derived the speed of sound in a gas using the impulse–momentum theorem applied to the cylinder of gas in Figure 16.20. Let us find the speed of sound in a gas using a different approach based on the element of gas in Figure 16.18. Proceed as follows. (a) Draw a force diagram for this element showing the forces exerted on the left and right surfaces due to the pressure of the gas on either side of the element. (b) By applying Newton’s second law to the element, show that
(c) By substituting ΔP = −(B ∂s/∂x) (Eq. 16.30), derive the following wave equation for sound:
(d) To a mathematical physicist, this equation demonstrates the existence of sound waves and determines their speed. As a physics student, you must take another step or two. Substitute into the wave equation the trial solution s(x, t) = smax cos (kx − ωt). Show that this function satisfies the wave equation, provided
(a)
The force diagram for this element showing the force exerted on the left and the right surface.
Answer to Problem 17.72CP
The force diagram for this element showing the force exerted on the left and the right surface is
Explanation of Solution
Force diagram contains all the forces acting on the body. It contains the direction of the each force acting on the body represents at its top and bottom end or left and right sides.
The force diagram for this element showing the force exerted on the left and the right surface is shown below.
Figure (1)
The force diagram of the element of gas in Figure (1) indicates the force exerted on the right and left surfaces due the pressure of the gas on the either side of the gas.
(b)
The expression,
Answer to Problem 17.72CP
The expression
Explanation of Solution
Let
The net force to the right on the chunk of air in Figure (1) is,
The force due to atmosphere is,
Here,
Differentiate the equation (1) with respect to
Formula to calculate the mass of the air is,
Here,
Formula to calculate the acceleration is,
Here,
From Newton’s second law, formula to calculate the Force is,
Substitute
Conclusion:
Therefore the expression,
(c)
The wave equation for sound is
Answer to Problem 17.72CP
The following wave equation for sound is
Explanation of Solution
The value of the
From part (b), the given expression is,
Substitute
Thus, the wave equation for sound is
Conclusion:
Therefore, the wave equation for sound is
(d)
The function
Answer to Problem 17.72CP
The function
Explanation of Solution
The given wave equation is,
Apply the trial solution in the above equation.
Double differentiate the equation (1) with respect to
Double differentiate the equation (1) with respect to
The wave equation for sound in part (c) is,
Substitute
Thus, the function
Conclusion:
Therefore, the function
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Additional Science Textbook Solutions
Physical Universe
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Conceptual Physical Science Explorations
University Physics with Modern Physics (14th Edition)
Conceptual Physics: The High School Physics Program
College Physics: A Strategic Approach (4th Edition)
- Table 17.1 shows the speed of sound is typically an order of magnitude larger in solids than in gases. To what can this higher value be most directly attributed? (a) the difference in density between solids and gases (b) the difference in compressibility between solids and gases (c) the limited size of a solid object compared to a free gas (d) the impossibility of holding a gas under significant tensionarrow_forwardQ. The speed v of sound in a gas depends on the pressure p and density d of the gas and is modeled by the formula v(p, d) = k where k is some constant. Find the rate of change of speed with respect to p and with respect to d.arrow_forwardFQ 6 Item 5: Train, look and listen. Important note: Unless otherwise stated, your answers must be in SI units. Consider a train that is about to enter a tunnel and is moving at a top speed of 54.0 [kph]. To signal that the train is coming, the train driver blows a horn, producing sound of some frequency. At that time, the temperature of air is about 25.0°C. What is the speed of sound in air at this temperature? 346 B. If the sound is reflected back by a wall at the opening of the tunnel, what is the ratio of the incident frequency and the received frequency heard by the train driver? Write your answer in decimal form. A. Answer: f new fo =arrow_forward
- Compute the molecular mass M of a gas for which y = 1.40 and in which the speed of sound is 1260 m/s at precisely 0°C.arrow_forwardA car that is about to enter a tunnel and is moving at a top speed of 50.0 [kph]. To signal that the car is coming, the car driver blows a horn, producing a sound of some frequency. At that time, the temperature of the air is about 20.0°C. What is the speed of sound in air at this temperature? If the sound is reflected back by a wall at the opening of the tunnel, what is the ratio of the incident frequency and the received frequency heard by the car driver?arrow_forwardPlease help me with this. Thanks!arrow_forward
- I got .28sin(19pix-13034pit) which is incorrectarrow_forwardPr5. Two identical loudspeakers are located at points (-10,0,0) and (0,0, 10) of our coor- dinate system, where the numbers in the brac- kets correspond to the (r, y, z) coordinates of the points, expressed in meters. The loudspeakers are driven by the same oscillator with a frequ- ency of 170 Hz. The speed of sound in air can be considered 340 m/s. a) Give the coordinates of those points loca- ted on the positive r axis where the sound waves coming from the two loudspeakers interfere con- structively. b) A receiver is started to move slowly from the origin (0,0,0) along a path lying in the r-y plane so that it receives constant sound intensity throughout its slow motion. What is the shape of the path the receiver should take?arrow_forward#4arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning