
Concept explainers
A cowboy stands on horizontal ground between two parallel, vertical clifTs. He is not midway between the cliffs. Me fires a shot and hears its echoes. The second echo arrives 1.92 s after the first and 1.47 s before the third. Consider only the sound traveling parallel to the ground and reflecting from the cliffs, (a) What is the distance between the cliffs? (b) What If? If he can hear a fourth echo, how long after the third echo does it arrive?
(a)

The distance between the cliffs’s.
Answer to Problem 17.18P
The distance between the cliff’s is
Explanation of Solution
Given info: The time of the second echo is
The distance travelled by the echo is the sum of the distance travelled by the sound and the distance that is received after striking to the object to the transmitter.
The formula to calculate the time interval of the first echo is,
Here,
Substitute
Thus, the time interval of the first echo is
The formula to calculate the time interval of the second echo is,
Here,
Substitute
Thus, the time interval of the second echo is
The formula to calculate the time interval of the third echo is,
Here,
Substitute
Thus, the time interval of the third echo is
The formula to calculate the difference in time between the first and second echo is,
Here,
Substitute
The formula to calculate the difference in time between the second and third echo is,
Here,
Substitute
Thus, the value of time difference between the first and second echo is
Substitute
Conclusion:
Therefore, the distance between the cliff’s is
(b)

The time interval after which the third echo arrive.
Answer to Problem 17.18P
The time interval after which the third echo arrive is
Explanation of Solution
Given info: The time of the second echo is
The formula to calculate the time interval of the fourth echo is,
Here,
Substitute
Thus, the time interval of the fourth echo is
The formula to calculate the time interval of the third echo is,
Here,
Substitute
Thus, the time interval of the third echo is
The formula to calculate the difference in time between the third and fourth echo is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the time interval after which the third echo arrive is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- The spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
- A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forwardPROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forwardCircular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forward
- The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





