Concept explainers
Review. For the arrangement shown in Figure P14.60, the inclined plane and the small pulley are frictionless; the string supports the object of mass M at the bottom of the plane; and the string has mass m. The system is in equilibrium, and the vertical part of the string has a length h. We wish to study standing waves set up in the vertical section of the string. (a) What analysis model describes the object of mass M? (b) What analysis model describes the waves on the vertical part of the string? (c) Find the tension in the string. (d) Model the shape of the string as one leg and the hypotenuse of a right triangle. Find the whole length of the string. (e) Find the mass per unit length of the string. (f) Find the speed of waves on the string. (g) Find the lowest frequency for a standing wave on the vertical section of the string. (h) Evaluate this result for M = 1.50 kg, m = 0.750 g, h = 0.500 m, and θ = 30.0°. (i) Find the numerical value for the lowest frequency for a standing wave on the sloped section of the string.
Figure P14.60
(a)
The analysis model
Answer to Problem 60P
The object is described using constant acceleration model.
Explanation of Solution
The mass of the object supported by the string is
The object of mass
Conclusion:
Therefore, the object of mass
(b)
The analysis model
Answer to Problem 60P
The waves on the vertical part of the string can be described using the waves under boundary conditions model.
Explanation of Solution
The mass of the object supported by the string is
The vertical portion of the string is fixed at both the ends hence the boundary conditions stand for the waves. Write the general equation for the wavelength on the string.
Here,
Conclusion:
Therefore, the waves on the vertical part of the string can be described using the waves under boundary conditions model.
(c)
The tension on the string
Answer to Problem 60P
The tension on the string is
Explanation of Solution
Figure.1 shows the arrangement of the mass-pulley system.
Write the equation for the net force acting on the mass.
Here,
Conclusion:
Re-write the equation (I) such that the net force is zero.
Therefore, the tension on the string is
(d)
The length of the string
Answer to Problem 60P
The length of the string is
Explanation of Solution
Write the equation for the sine of the angle of inclination.
Rewrite the equation (I) to find the equation for the
Write the equation for the total length of the string.
Conclusion:
Substitute equation (II) in equation (III).
Therefore, the length of the strings is
(e)
The mass per unit length of the string
Answer to Problem 60P
The mass per unit length of the string is
Explanation of Solution
Write the equation for the mass per unit length of the string.
Here,
Conclusion:
Substitute equation (V) in equation (VI).
Therefore, the mass per unit length of the string is
(f)
The speed of waves on the string
Answer to Problem 60P
The speed of waves on the string is
Explanation of Solution
Write the equation for the speed of the waves on the string.
Here,
Conclusion:
Substitute equation (II) and equation (VIII) in equation (IX).
Therefore, the speed of the waves on the string is
(g)
The lowest frequency for a standing wave
Answer to Problem 60P
The lowest frequency for the standing waves is
Explanation of Solution
The length
Write the equation for the frequency of the standing wave.
Here,
Conclusion:
Substitute equation (X) and equation (XI) in equation (XII).
Therefore, the lowest possible frequency of the standing waves is
(h)
The lowest frequency for a set of given values
Answer to Problem 60P
The lowest frequency for the standing waves is
Explanation of Solution
Write the equation for the lowest frequency of the standing wave from equation (XIII).
Conclusion:
Substitute
Therefore, the lowest frequency of the standing waves is
(i)
The lowest frequency on the sloped section
Answer to Problem 60P
The lowest frequency for the standing waves on the sloped section is
Explanation of Solution
The wavelength of the fundamental mode of vibration is twice the length of the sloped section.
Here,
Substitute equation (X) and equation (XIV) in equation (XII).
Substitute
Therefore, the lowest frequency of the standing waves is
Want to see more full solutions like this?
Chapter 14 Solutions
Principles of Physics: A Calculus-Based Text
- Review. A sphere of mass M is supported by a string that passes over a pulley at the end of a horizontal rod of length L (Fig. P14.25). The string makes an angle θ with the rod. The fundamental frequency of standing waves in the portion of the string above the rod is f. Find the mass of the portion of the string above the rod. Figure P14.25 Problems 25 and 26.arrow_forwardAs in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forwardReview. A sphere of mass M is supported by a string that passes over a pulley at the end of a horizontal rod of length L (Fig. P17.15). The string makes an angle with the rod. The fundamental frequency of standing waves in the portion of the string above the rod is f. Find the mass of the portion of the string above the rod.arrow_forward
- A string with a mass m = 8.00 g and a length L = 5.00 m has one end attached to a wall; the other end is draped over a small, fixed pulley a distance d = 4.00 m from the wall and attached to a hanging object with a mass M = 4.00 kg as in Figure P14.21. If the horizontal part of the string is plucked, what is the fundamental frequency of its vibration? Figure P14.21arrow_forwardA block of mass m = 5.00 kg is suspended from a wire that passes over a pulley and is attached to a wall (Fig. P17.71). Traveling waves are observed to have a speed of 33.0 m/s on the wire. a. What is the mass per unit length of the wire? b. What would the speed of waves on the wire be if the suspended mass were decreased to 2.50 kg? FIGURE P17.71arrow_forwardA sinusoidal wave in a rope is described by the wave function y=0.20sin(0.75x+18t) where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.250 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in Figure P16.13. What is the mass of the suspended object?arrow_forward
- A barrel organ is shown in Figure P18.38. Such organs are much smaller than traditional organs, allowing them to fit in smaller spaces and even allowing them to be portable. Use the photo to estimate the range in fundamental frequencies produced by the organ pipes in such an instrument. Assume the pipes are open at both ends. How does that range compare to a piano whose strings range in fundamental frequency from 21.7 Hz to 4186.0 Hz? FIGURE P18.38arrow_forwardThe wave is a particular type of pulse that can propagate through a large crowd gathered at a sports arena (Fig. P13.54). The elements of the medium are the spectators, with zero position corresponding to their being seated and maximum position corresponding to their standing and raising their arms. When a large fraction of the spectators participates in the wave motion, a somewhat stable pulse shape can develop. The wave speed depends on peoples reaction time, which is typically on the order of 0.1 s. Estimate the order of magnitude, in minutes, of the time interval required for such a pulse to make one circuit around a large sports stadium. State the quantities you measure or estimate and their values.arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forward
- Review. An aluminum wire is held between two clamps under zero tension at room temperature. Reducing the temperature, which results in a decrease in the wires equilibrium length, increases the tension in the wire. Taking the cross-sectional area of the wire to be 5.00 10-6 m2, the density to be 2.70 103 kg/m3, and Young's modulus to be 7.00 1010 N/m2, what strain (L/L.) results in a transverse wave speed of 100 m/s?arrow_forwardA wave on a string is driven by a string vibrator, which oscillates at a frequency of 100.00 Hz and an amplitude of 1.00 cm. The string vibrator operates at a voltage of 12.00 V and a current of 0.20 A. The power consumed by the string vibrator is P=IV . Assume that the string vibrator is 90% efficient at converting electrical energy into the energy associated with the vibrations of the string. The string is 3.00 m long, and is under a tension of 60.00 N. What is the linear mass density of the string?arrow_forwardA steel wire with mass 25.0 g and length 1.35 m is strung on a bass so that the distance from the nut to the bridge is 1.10 m. (a) Compute the linear density of the string. (b) What velocity wave on the string will produce the desired fundamental frequency of the E1 string, 41.2 Hz? (c) Calculate the tension required to obtain the proper frequency. (d) Calculate the wavelength of the strings vibration. (e) What is the wave-length of the sound produced in air? (Assume the speed of sound in air is 343 m/s.)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning