Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 20P

(a)

To determine

The violinist’s finger distance from the end of string to play the concert A .

(a)

Expert Solution
Check Mark

Answer to Problem 20P

The violinist’s finger distance from the end of string to play the concert A is 3.82cm .

Explanation of Solution

Given info: The frequency of the concert A is 440Hz , the frequency of concert G is 392Hz , the length of the string in concert G is 0.350m and the half width of the finger is 0.600cm .

Formula to calculate length in concert G is,

λA=2LA=vfALA=v2fA

Here,

LA is the length of the string in A concert.

fA is the frequency of concert A .

Formula to calculate the speed of the wave in concert G is,

λG=2LG=vfGv=2fGLG

Here,

fG is the frequency of concert G .

LG is the length of the string in G concert.

v is the speed of wave.

The difference between the length of the concert G and concert A is,

LGLA (1)

Substitute v2fA for LA in equation (1).

LGLA=LGv2fA (2)

Substitute 2fGLG for v in equation (2).

LGLA=LG2fGLG2fA=LGfGLGfA=LG(1fGfA) (3)

Substitute 0.350m for LG , 440Hz for fA and 392Hz for fA in equation (3).

LGLA=0.350m(1392Hz440Hz)=0.0382m=0.0382m(100cm1m)=3.82cm

So, the finger must be placed at 3.82cm from the end of the string to play the concert A .

Conclusion:

Therefore, the violinist’s finger distance from the end of string to play the concert A is 3.82cm .

(b)

To determine

The maximum allowable percentage change in the string tension.

(b)

Expert Solution
Check Mark

Answer to Problem 20P

The maximum allowable percentage change in the string tension is 3.84% .

Explanation of Solution

Given info: The frequency of the concert A is 440Hz , the frequency of concert G is 392Hz , the length of the string in concert G is 0.350m and the half width of the finger is 0.600cm .

The difference between the length of the concert G and concert A is,

LGLA=3.82cm (4)

Substitute 0.350m for LG in equation (4) to get the LA .

0.350mLA=3.82cmLA=0.312m=0.312m(100cm1m)=31.2cm

Formula to calculate the frequency of the wave on the string in concert A is,

fA=12LATμLA=12fATμ (3)

Differentiate the above equation with respect to T .

dLA=dT2fATμ (4)

Divide the equation (II) by equation (I).

dLALA=dT2TdTT=2dLALA (5)

  • dLA is the half width of the finger.

Convert the equation into percentage.

dTT=2dLALA×100 (6)

Substitute 31.18cm for LA and 0.600cm for dLA in equation (VI) to find the dTT .

dTT=2×0.600cm31.2cm×100=3.85%

Conclusion:

Therefore, the maximum allowable percentage change in the string tension is 3.85% .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The A string on a violin has a fundamental frequency of 440 Hz . The length of the vibrating portion is 28 cm , and it has a mass of 0.37 g . Under what tension must the string be placed?Express your answer using two significant figures.
A cellist tunes the C-string of her instrument to a fundamental frequency of 65.4 Hz. The vibrating portion of the string is 0.600 m long and has a mass of 14.4 g.   (A) With what tension must she stretch that portion of the string? Express your answer in newtons. (B) What percentage increase in tension is needed to increase the frequency from 65.4 Hz to 73.4 Hz, corresponding to a rise in pitch from C to D? Express your answer as a percentage.
A violin string of ?=31.8 cm in length and ?=0.64gm⁄ linear mass density is tuned to play an A4 note at 440.0 Hz. This means that the string is in its fundamental oscillation mode, i.e., it will be on that note without placing any fingers on it. From this information, Calculate the tension on the string that allows it to be kept in tune.

Chapter 14 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 14 - Prob. 5OQCh. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - A standing wave having three nodes is set up in a...Ch. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - What limits the amplitude of motion of a real...Ch. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - A string with a mass m = 8.00 g and a length L =...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Review. A sphere of mass M is supported by a...Ch. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Two adjacent natural frequencies of an organ pipe...Ch. 14 - Do not stick anything into your ear! Estimate the...Ch. 14 - Prob. 37PCh. 14 - As shown in Figure P14.37, water is pumped into a...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Why is the following situation impossible? A...Ch. 14 - 23. An air column in a glass tube is open at one...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - Prob. 50PCh. 14 - An earthquake can produce a seiche in a lake in...Ch. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - A nylon string has mass 5.50 g and length L = 86.0...Ch. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Review. For the arrangement shown in Figure...Ch. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Review. Consider the apparatus shown in Figure...Ch. 14 - Prob. 69P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning