
(a)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Steps for change in oxidation number method to
1 Oxidation number of each element has to be assigned and change in oxidation number has to be identified. Then add electrons to balance charge.
2 Two half-reactions with only elements that have changed oxidation numbers have to be formed.
3 Both reactions multiplied by smallest whole number that can make electrons lost equal to electron gained.
4 Coefficient should transfer to original equation.
5 Remaining oxygen atoms are balanced through water molecules.
6 For acidic medium, charge is balanced by addition of
(a)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (1) can be assigned as follows:
Change in oxidation number occurred in copper and oxygen thus two half-reactions can be formed as follows:
Oxidation half-reaction for copper is as follows:
Reduction half-reaction for oxygen is as follows:
Multiply equation (2) by 2 so that number of electrons gained and lost becomes same and cancels each other. Thus, equation (2) is as follows:
Coefficient of atoms in equation (3) and equation (4) of half reactions gets transfer to equation (1). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(b)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (5) can be assigned as follows:
Change in oxidation number occurred in oxygen and chlorine thus two half-reactions can be formed as follows:
Oxidation half-reaction for oxygen is as follows:
Reduction half-reaction for chlorine is as follows:
Coefficient of atoms in both half reactions gets transfer to equation (5). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(c)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (9) can be assigned as follows:
Change in oxidation number occurred in calcium and hydrogen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for calcium is as follows:
Balanced reduction half-reaction for hydrogen is as follows:
Coefficient of atoms in equation (10) and equation (11) of half reactions gets transfer to equation (9). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(d)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(d)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (12) can be assigned as follows:
Change in oxidation number occurred in sulfur and oxygen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for sulfur is as follows:
Balanced reduction half-reaction for oxygen is as follows:
Multiply equation (14) by 4 so that number of electrons gained and lost becomes same and cancels each other. Thus, equation (14) becomes as follows:
Coefficient of atoms in equation (13) and equation (15) of half reactions gets transfer to equation (12). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
(e)
Interpretation:
The below equation through change in oxidation number method has to be balanced.
Concept Introduction:
Refer to part (a).
(e)

Explanation of Solution
Given reaction is as follows:
Oxidation number of each element in equation (16) can be assigned as follows:
Change in oxidation number occurred in carbon and nitrogen thus two balanced half-reactions can be formed as follows:
Balanced oxidation half-reaction for carbon is as follows:
Balanced reduction half-reaction for nitrogen is as follows:
Coefficient of atoms in equation (17) and equation (18) of half reactions gets transfer to equation (19). Remaining atoms are balanced by equalizing its number on both sides. Thus balanced equation is as follows:
Want to see more full solutions like this?
Chapter 17 Solutions
FOUND.OF COLLEGE CHEMISTRY
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





