Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17, Problem 11E

A “half-sinusoidal” waveform is shown in Fig. 17.31, which is the output of a half-wave rectifier used to help convert a sinusoidal input to dc. Find the Fourier series representation and plot the signal and Fourier series representation for n = 10 terms.

Chapter 17, Problem 11E, A half-sinusoidal waveform is shown in Fig. 17.31, which is the output of a half-wave rectifier used

■ FIGURE 17.31

Expert Solution & Answer
Check Mark
To determine

Find the Fourier series coefficients a0, an, and bn, and plot the signal and Fourier representation for n=10.

Answer to Problem 11E

The values of the Fourier series coefficients a0, an, and bn is determined, and the signal v(t) is sketched as shown in Figure 1.

Explanation of Solution

Given data:

Refer to Figure 17.31 in the textbook.

Formula used:

Write the general expression for Fourier series expansion.

f(t)=a0+n=1(ancosnω0t+bnsinnω0t)        (1)

Write the general expression for Fourier series coefficient a0.

a0=1T0Tf(t)dt        (2)

Write the general expression for Fourier series coefficient an.

an=2T0Tf(t)cosnω0tdt        (3)

Write the general expression for Fourier series coefficient bn.

bn=2T0Tf(t)sinnω0tdt        (4)

Write the expression to calculate the fundamental angular frequency.

ω0=2πT=2πf0        (5)

Here,

T is the period of the function.

Calculation:

In the given Figure 17.31, the time period is T=0.4.

The function v(t) for the given waveform is,

v(t)={Vmcos5πt,0.1t0.10,0.1t0.3        (6)

Substitute 0.4 for T in equation (5) to find ω0.

ω0=2π0.4

ω0=5π        (7)

Applying equation (6) in equation (2) to find a0 as follows,

a0=10.400.4v(t)dt=10.4[0.10.1Vmcos5πtdt+0.10.3(0)dt+]=Vm0.4[sin5πt5π]0.10.1=Vm0.4[sin5π(0.1)5πsin5π(0.1)5π]=Vm0.4[1+15π]

Simplify the above equation as follows,

a0=Vmπ

For half wave symmetry and even symmetry,

For all values of ‘n’, bn=0.

Applying equation (6) in equation (3) to find the value of coefficient an.

an=20.400.4v(t)cosnω0tdt

an=2Vm0.4[0.10.1cos(5πt)cos(5πnt)dt]{ω0=5π}        (8)

Consider the function,

x=cos(5πt)cos(5πnt)dt

Consider,

u=5πt

On differentiating the above expression,

dudt=5πdt=du5π

Equation (8) will be follows,

x=15πcos(u)cos(nu)du        (9)

In the above equation, consider,

y=cos(u)cos(nu)du=cos(nu+u)+cos(nuu)2du{cos(x)cos(y)=12[cos(y+x)+cos(yx)]}=cos((n+1)u)+cos((n1)u)2du

By applying linearity,

y=12cos((n+1)u)du+12cos((n1)u)du        (10)

In equation (10),

consider,

m=cos((n+1)u)du        (11)

Let,

v=(n+1)udvdu=(n+1)du=dvn+1

Equation (11) will be as follows,

m=1n+1cos(v)dv=sin(v)n+1=sin((n+1)u)n+1{v=(n+1)u}

Similarly, in equation (10),

consider,

l=cos((n1)u)du        (12)

Let,

v=(n1)udvdu=(n1)du=dvn1

Equation (12) will be as follows,

l=1n1cos(v)dv=sin(v)n1=sin((n1)u)n1v=(n1)u

Substitute the values of m and l in equation (10) as follows,

y=12[sin((n+1)u)n+1+sin((n1)u)n1]=sin((n+1)u)2(n+1)+sin((n1)u)2(n1)

Substitute the value of y in equation (9) as follows,

x=15π[sin((n+1)u)2(n+1)+sin((n1)u)2(n1)]=sin((n+1)u)10π(n+1)+sin((n1)u)10π(n1)=sin(5π(n+1)t)10π(n+1)+sin(5π(n1)t)10π(n1){u=5πt}

Therefore,

cos(5πt)cos(5πnt)dt=sin(5π(n+1)t)10π(n+1)+sin(5π(n1)t)10π(n1)=(n1)sin(5π(n+1)t)+(n+1)sin(5π(n1)t)10π(n21)

On applying the limits,

0.10.1cos(5πt)cos(5πnt)dt=[(n1)sin(5π(n+1)t)+(n+1)sin(5π(n1)t)10π(n21)]0.10.1=[(n1)sin(5π(n+1)(0.1))+(n+1)sin(5π(n1)(0.1))10π(n21)][(n1)sin(5π(n+1)(0.1))+(n+1)sin(5π(n1)(0.1))10π(n21)]=[(n1)sin(nπ+π2)+(n+1)sin(nππ2)10π(n21)][(n1)sin(nπ+π2)(n+1)sin(nππ2)10π(n21)]=[(n1)sin(nπ+π2)+(n+1)sin(nππ2)10π(n21)]+[(n1)sin(nπ+π2)+(n+1)sin(nππ2)10π(n21)]

Simplify the equation as follows,

0.10.1cos(5πt)cos(5πnt)dt=2[(n1)sin(nπ+π2)+(n+1)sin(nππ2)]10π(n21)=2[(n1)sin(nπ2+π2)+(n+1)sin(nπ2π2)]10π(n21)=2[(n1)cos(nπ2)(n+1)cos(nπ2)]10π(n21){sin(90+θ)=cosθ,sin(θ)=sinθ}=2[ncos(nπ2)cos(nπ2)(n+1)cos(nπ2)]10π(n21)

Simplify the equation as follows,

0.10.1cos(5πt)cos(5πnt)dt=2[ncos(nπ2)cos(nπ2)(n+1)cos(nπ2)]10π(n21){cos(θ)=cosθ}=2[ncos(nπ2)cos(nπ2)ncos(nπ2)cos(nπ2)]10π(n21)=2[2cos(nπ2)]10π(n21)=2cos(nπ2)5π(n21)

Substitute the value of 0.10.1cos(5πt)cos(5πnt)dt in equation (8) as follows,

an=2Vm0.4[2cos(nπ2)5π(n21)]=2Vmcos(nπ2)π(n21)

an=2Vmπcos(nπ2)(1n2)(n1)

Substitute the value of a0, an, and bn in equation (1) as follows,

v(t)=Vmπ+n=1((2Vmπ)(cos(nπ2)1n2)cosnω0t+0)=Vmπ+n=1((2Vmπ)(cos(nπ2)1n2)cos5nπt)

Representing through n=10,

v(t)=Vmπ+Vm2cos5πt+2Vm3πcos10πt2Vm15πcos20πt+2Vm35πcos30πt2Vm63πcos40πt+2Vm99πcos50πt

By considering Vm=1V, the above equation will be as follows,

v(t)=1π+12cos5πt+23πcos10πt215πcos20πt+235πcos30πt263πcos40πt+299πcos50πt

Matlab code for the signal v(t) is shown below:

t=linspace(-0.6,0.6,1000); % vector for time over 1000 points.

Vm=1;

v0=Vm/(pi); % constant.

for i=1:1000;

sum=0; 

     sum=sum+ 0.5*cos(5*pi*t(i)) + (2/(3*pi))*cos(10*pi*t(i)) - (2/(15*pi))*cos(20*pi*t(i)) + (2/(35*pi))*cos(30*pi*t(i)) - (2/(63*pi))*cos(40*pi*t(i)) + (2/(99*pi))*cos(50*pi*t(i));

vt(i)=v0+sum;

end

plot(t,vt)

xlabel('Time t in seconds')

ylabel('Voltage value')

title('Fourier representation of voltage signal v(t)')

Matlab output:

The Fourier representation of voltage signal v(t) is shown in Figure 1.

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 17, Problem 11E

Conclusion:

Thus, the values of the Fourier series coefficients a0, an, and bn is determined, and the signal v(t) is sketched as shown in Figure 1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Need correctly in neat and clean handwritten solution.
Which of the statements given below is false? A)     Harmonics of a voltage or current are found with the help of fourier analysis B)     In Fourier analysis of double symmetry current waveform sin (wht) harmonics are zero C)     None D)     In the current waveform with half-wave symmetry, even harmonics are zero E)     In most power electronics circuits, the higher the harmonic frequency, the higher the harmonic amplitude.
1. Find the Fourier Series expansion for the signals x(t)given in Figure 1, theoretically. 2. Plot the signals in time domain for 5, 10 and 20 harmonics. 3. Compare the signal both in time domain and frequency domain. (The period, T of the signal is 2kHz) x(t) /2 T Figure 1

Chapter 17 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Ch. 17.6 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.8 - Find (a) F5sin23t); (b) FAsin20t); (c)...Ch. 17.9 - Prob. 15PCh. 17.10 - Prob. 16PCh. 17 - Determine the fundamental frequency, fundamental...Ch. 17 - Plot multiple periods of the first, third, and...Ch. 17 - Calculate a0 for the following: (a) 4 sin 4t; (b)...Ch. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - With respect to the periodic waveform sketched in...Ch. 17 - Prob. 9ECh. 17 - Prob. 10ECh. 17 - A half-sinusoidal waveform is shown in Fig. 17.31,...Ch. 17 - Plot the line spectrum (limited to the six largest...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - The nonperiodic waveform g(t) is defined in Fig....Ch. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Use the Fourier transform to obtain and plot the...Ch. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - For g(t) = 3etu(t), calculate (a) G(j); (b) ().Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Find F(j) if f(t) is given by (a) 2 cos 10t; (b)...Ch. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - If a system is described by transfer function h(t)...Ch. 17 - Prob. 55ECh. 17 - (a) Design a noninverting amplifier having a gain...Ch. 17 - Prob. 57ECh. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Design an audio amplifier with gain of 10, using...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Intro to FOURIER SERIES: The Big Idea; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=wmCIrpLBFds;License: Standard Youtube License