Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 104QAP
In a fully charged lead storage battery, the electrolyte consists of 38% sulfuric acid by mass. The solution has a density of 1.286 g/cm3. Calculate E for the cell. Assume all the H+ ions come from the first dissociation of H2SO4, which is complete.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the
product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15%
glycerin by weight.
If the original charge is 500 kg, evaluate;
e. The ratio of sucrose to water in the original charge (wt/wt).
f. Moles of CO2 evolved.
g. Maximum possible amount of ethanol that could be formed.
h. Conversion efficiency.
i. Per cent excess of excess reactant.
Reactions:
Inversion reaction: C12H22O11 + H2O →2C6H12O6
Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2
Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
2°C. +2°C. cleavage
Bond A
•CH3 + 26.← Cleavage
2°C. +
Bond C
+3°C•
CH3 2C
Cleavage
E
2°C. 26.
weakest bond
Intact molecule
Strongest 3°C 20.
Gund
Largest
argest
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
C
Weakest
bond
A
Produces
Most
Bond
Strongest
Bond
Strongest Gund
produces least stable
radicals
Weakest
Stable radical
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
13°C. formed in
bound C
cleavage
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
• CH3
methyl radical
Formed in Gund A Cleavage
c.…
Chapter 17 Solutions
Chemistry: Principles and Reactions
Ch. 17 - Balance the following half-equations. Balance (a)...Ch. 17 - Balance the following half-equations. Balance (a)...Ch. 17 - Prob. 3QAPCh. 17 - Balance the following reactions in acid: (a)...Ch. 17 - Write balanced equations for the following...Ch. 17 - Write balanced equations for the following...Ch. 17 - Prob. 7QAPCh. 17 - Write balanced net ionic equations for the...Ch. 17 - Write balanced net ionic equations for the...Ch. 17 - Prob. 10QAP
Ch. 17 - Write a balanced chemical equation for the overall...Ch. 17 - Write a balanced net ionic equation for the...Ch. 17 - Draw a diagram for a salt bridge cell for each of...Ch. 17 - Follow the directions in Question 13 for the...Ch. 17 - Consider a voltaic salt bridge cell represented by...Ch. 17 - Consider a salt bridge voltaic cell represented by...Ch. 17 - Consider a salt bridge cell in which the anode is...Ch. 17 - Follow the directions in Question 17 for a salt...Ch. 17 - Prob. 19QAPCh. 17 - Which species in each pair is the stronger...Ch. 17 - Using Table 17.1, arrange the following reducing...Ch. 17 - Use Table 17.1 to arrange the following oxidizing...Ch. 17 - Consider the following species. Cr3+ Hg(l) H2...Ch. 17 - Follow the directions of Question 23 for the...Ch. 17 - For the following half-reactions, answer these...Ch. 17 - For the following half-reactions, answer the...Ch. 17 - Use Table 17.1 to select (a) a reducing agent in...Ch. 17 - Use Table 17.1 to select (a) an oxidizing agent in...Ch. 17 - Calculate E° for the following voltaic cells: (a)...Ch. 17 - Calculate E° for the following voltaic cells: (a)...Ch. 17 - Using Table 17.1, calculate E° for the reaction...Ch. 17 - Using Table 17.1, calculate E° for the reaction...Ch. 17 - Calculate E° for the following cells: (a)...Ch. 17 - Calculate E° for the following cells: (a)...Ch. 17 - Suppose Ered for Ag+Ag were set equal to zero...Ch. 17 - Suppose Ered for H+H2 were taken to be 0.300 V...Ch. 17 - Which of the following reactions is/are...Ch. 17 - Which of the following reactions is(are)...Ch. 17 - Use the following half-equations to write three...Ch. 17 - Follow the directions of Question 39 for the...Ch. 17 - Use Table 17.1 to answer the following questions:...Ch. 17 - Use Table 17.1 to answer the following questions....Ch. 17 - Write the equation for the reaction, if any, that...Ch. 17 - Write the equation for the reaction, if any, that...Ch. 17 - Prob. 45QAPCh. 17 - Prob. 46QAPCh. 17 - Use Table 17.1 to predict what reaction, if any,...Ch. 17 - Use Table 17.1 to predict what reaction, if any,...Ch. 17 - Consider a cell reaction at 25°C where n=2 . Fill...Ch. 17 - Consider a cell reaction at 25°C where n=4 . Fill...Ch. 17 - For a certain cell, G=25.0 kJ. Calculate E° if n...Ch. 17 - For a certain cell, E=1.08 V. Calculate G° if n is...Ch. 17 - Calculate E°, G°, and K at 25°C for the reaction...Ch. 17 - Calculate E°, G°, and K at 25°C for the reaction...Ch. 17 - Calculate G° at 25°C for each of the reactions...Ch. 17 - Calculate G° at 25°C for each of the reactions...Ch. 17 - Calculate K at 25°C for each of the reactions...Ch. 17 - Calculate K at 25°C for each of the reactions...Ch. 17 - Prob. 59QAPCh. 17 - Use Table 17.1 to find Kffor AuCl4- (aq) at 25°C.Ch. 17 - Prob. 61QAPCh. 17 - What is E° at 25°C for the following reaction?...Ch. 17 - Consider a voltaic cell at 25°C in which the...Ch. 17 - Consider a voltaic cell at 25°C in which the...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - Calculate the voltages of the following cells at...Ch. 17 - Calculate the voltages of the following cells at...Ch. 17 - Consider the reaction...Ch. 17 - Consider the reaction at 25°C:...Ch. 17 - Complete the following cell notation....Ch. 17 - Complete the following cell notation....Ch. 17 - Consider the reaction below at 25°C:...Ch. 17 - Consider the reaction low at 25°C:...Ch. 17 - Consider a cell in which the reaction is...Ch. 17 - Consider a cell in which the reaction is...Ch. 17 - An electrolytic cell produces aluminum from Al2O3...Ch. 17 - Prob. 78QAPCh. 17 - A solution containing a metal ion (M2+(aq)) is...Ch. 17 - A solution containing a metal ion (M2+(aq)) is...Ch. 17 - A baby's spoon with an area of 6.25 cm2 is plated...Ch. 17 - A metallurgist wants to gold-plate an object with...Ch. 17 - A lead storage battery delivers a current of 6.00...Ch. 17 - Calcium metal can be obtained by the direct...Ch. 17 - Given the following data:...Ch. 17 - In a nickel-cadmium battery (Nicad), cadmium is...Ch. 17 - Hydrogen gas is produced when water is...Ch. 17 - Consider the electrolysis of NiCl2 to Ni(s) and...Ch. 17 - An electrolysis experiment is performed to...Ch. 17 - Prob. 90QAPCh. 17 - Prob. 91QAPCh. 17 - Prob. 92QAPCh. 17 - Atomic masses can be determined by electrolysis....Ch. 17 - Consider the following reaction at 25°C:...Ch. 17 - Given the standard reduction potential for...Ch. 17 - Choose the figure that best represents the results...Ch. 17 - For the cell: Cr|Cr3+Co2+|Co E° is 0.46 V. The...Ch. 17 - Which of the changes below will increase the...Ch. 17 - The standard potential for the reduction of AgSCN...Ch. 17 - Consider the following standard reduction...Ch. 17 - Use Table 17.1 to answer the following questions....Ch. 17 - Consider three metals, X, Y, and Z, and their...Ch. 17 - An alloy made up of tin and copper is prepared by...Ch. 17 - In a fully charged lead storage battery, the...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - In biological systems, acetate ion is converted to...Ch. 17 - Consider the cell Pt|H2|H+H+|H2|Pt In the anode...Ch. 17 - Prob. 108QAPCh. 17 - Prob. 109QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. < cleavage Bond A • CH3 + 26. t cleavage 2°C• +3°C• Bond C Cleavage CH3 ZC '2°C. 26. E Strongest 3°C. 2C. Gund Largest BDE weakest bond In that molecule a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest C bond Produces A Weakest Bond Most Strongest Bond Stable radical Strongest Gund produces least stable radicals b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 人 8°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. methyl radical •CH3 formed in bund A Cleavagearrow_forward
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY