Chemistry: Principles and Reactions
8th Edition
ISBN: 9781305079373
Author: William L. Masterton, Cecile N. Hurley
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 80QAP
A solution containing a metal ion (M2+(aq)) is electrolyzed by a current of 7.8 A. After 15.5 minutes, 2.39 g of the metal is plated out.
(a) How many coulombs are supplied by the battery?
(b) What is the metal? (Assume 100% efficiency.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 17 Solutions
Chemistry: Principles and Reactions
Ch. 17 - Balance the following half-equations. Balance (a)...Ch. 17 - Balance the following half-equations. Balance (a)...Ch. 17 - Prob. 3QAPCh. 17 - Balance the following reactions in acid: (a)...Ch. 17 - Write balanced equations for the following...Ch. 17 - Write balanced equations for the following...Ch. 17 - Prob. 7QAPCh. 17 - Write balanced net ionic equations for the...Ch. 17 - Write balanced net ionic equations for the...Ch. 17 - Prob. 10QAP
Ch. 17 - Write a balanced chemical equation for the overall...Ch. 17 - Write a balanced net ionic equation for the...Ch. 17 - Draw a diagram for a salt bridge cell for each of...Ch. 17 - Follow the directions in Question 13 for the...Ch. 17 - Consider a voltaic salt bridge cell represented by...Ch. 17 - Consider a salt bridge voltaic cell represented by...Ch. 17 - Consider a salt bridge cell in which the anode is...Ch. 17 - Follow the directions in Question 17 for a salt...Ch. 17 - Prob. 19QAPCh. 17 - Which species in each pair is the stronger...Ch. 17 - Using Table 17.1, arrange the following reducing...Ch. 17 - Use Table 17.1 to arrange the following oxidizing...Ch. 17 - Consider the following species. Cr3+ Hg(l) H2...Ch. 17 - Follow the directions of Question 23 for the...Ch. 17 - For the following half-reactions, answer these...Ch. 17 - For the following half-reactions, answer the...Ch. 17 - Use Table 17.1 to select (a) a reducing agent in...Ch. 17 - Use Table 17.1 to select (a) an oxidizing agent in...Ch. 17 - Calculate E° for the following voltaic cells: (a)...Ch. 17 - Calculate E° for the following voltaic cells: (a)...Ch. 17 - Using Table 17.1, calculate E° for the reaction...Ch. 17 - Using Table 17.1, calculate E° for the reaction...Ch. 17 - Calculate E° for the following cells: (a)...Ch. 17 - Calculate E° for the following cells: (a)...Ch. 17 - Suppose Ered for Ag+Ag were set equal to zero...Ch. 17 - Suppose Ered for H+H2 were taken to be 0.300 V...Ch. 17 - Which of the following reactions is/are...Ch. 17 - Which of the following reactions is(are)...Ch. 17 - Use the following half-equations to write three...Ch. 17 - Follow the directions of Question 39 for the...Ch. 17 - Use Table 17.1 to answer the following questions:...Ch. 17 - Use Table 17.1 to answer the following questions....Ch. 17 - Write the equation for the reaction, if any, that...Ch. 17 - Write the equation for the reaction, if any, that...Ch. 17 - Prob. 45QAPCh. 17 - Prob. 46QAPCh. 17 - Use Table 17.1 to predict what reaction, if any,...Ch. 17 - Use Table 17.1 to predict what reaction, if any,...Ch. 17 - Consider a cell reaction at 25°C where n=2 . Fill...Ch. 17 - Consider a cell reaction at 25°C where n=4 . Fill...Ch. 17 - For a certain cell, G=25.0 kJ. Calculate E° if n...Ch. 17 - For a certain cell, E=1.08 V. Calculate G° if n is...Ch. 17 - Calculate E°, G°, and K at 25°C for the reaction...Ch. 17 - Calculate E°, G°, and K at 25°C for the reaction...Ch. 17 - Calculate G° at 25°C for each of the reactions...Ch. 17 - Calculate G° at 25°C for each of the reactions...Ch. 17 - Calculate K at 25°C for each of the reactions...Ch. 17 - Calculate K at 25°C for each of the reactions...Ch. 17 - Prob. 59QAPCh. 17 - Use Table 17.1 to find Kffor AuCl4- (aq) at 25°C.Ch. 17 - Prob. 61QAPCh. 17 - What is E° at 25°C for the following reaction?...Ch. 17 - Consider a voltaic cell at 25°C in which the...Ch. 17 - Consider a voltaic cell at 25°C in which the...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - Calculate the voltages of the following cells at...Ch. 17 - Calculate the voltages of the following cells at...Ch. 17 - Consider the reaction...Ch. 17 - Consider the reaction at 25°C:...Ch. 17 - Complete the following cell notation....Ch. 17 - Complete the following cell notation....Ch. 17 - Consider the reaction below at 25°C:...Ch. 17 - Consider the reaction low at 25°C:...Ch. 17 - Consider a cell in which the reaction is...Ch. 17 - Consider a cell in which the reaction is...Ch. 17 - An electrolytic cell produces aluminum from Al2O3...Ch. 17 - Prob. 78QAPCh. 17 - A solution containing a metal ion (M2+(aq)) is...Ch. 17 - A solution containing a metal ion (M2+(aq)) is...Ch. 17 - A baby's spoon with an area of 6.25 cm2 is plated...Ch. 17 - A metallurgist wants to gold-plate an object with...Ch. 17 - A lead storage battery delivers a current of 6.00...Ch. 17 - Calcium metal can be obtained by the direct...Ch. 17 - Given the following data:...Ch. 17 - In a nickel-cadmium battery (Nicad), cadmium is...Ch. 17 - Hydrogen gas is produced when water is...Ch. 17 - Consider the electrolysis of NiCl2 to Ni(s) and...Ch. 17 - An electrolysis experiment is performed to...Ch. 17 - Prob. 90QAPCh. 17 - Prob. 91QAPCh. 17 - Prob. 92QAPCh. 17 - Atomic masses can be determined by electrolysis....Ch. 17 - Consider the following reaction at 25°C:...Ch. 17 - Given the standard reduction potential for...Ch. 17 - Choose the figure that best represents the results...Ch. 17 - For the cell: Cr|Cr3+Co2+|Co E° is 0.46 V. The...Ch. 17 - Which of the changes below will increase the...Ch. 17 - The standard potential for the reduction of AgSCN...Ch. 17 - Consider the following standard reduction...Ch. 17 - Use Table 17.1 to answer the following questions....Ch. 17 - Consider three metals, X, Y, and Z, and their...Ch. 17 - An alloy made up of tin and copper is prepared by...Ch. 17 - In a fully charged lead storage battery, the...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - In biological systems, acetate ion is converted to...Ch. 17 - Consider the cell Pt|H2|H+H+|H2|Pt In the anode...Ch. 17 - Prob. 108QAPCh. 17 - Prob. 109QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forward
- A solution contains the ions H+, Ag+, Pb2+, and Ba2+, each at a concentration of 1.0 M. (a) Which of these ions would be reduced first at the cathode during an electrolysis? (b) After the first ion has been completely removed by electrolysis, which is the second ion to be reduced? (c) Which, if any, of these ions cannot be reduced by the electrolysis of the aqueous solution?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forward
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardConsider the following cell running under standard conditions: Fe(s)Fe2+(aq)Al3+(aq)Al(s) a Is this a voltaic cell? b Which species is being reduced during the chemical reaction? c Which species is the oxidizing agent? d What happens to the concentration of Fe3+(aq) as the reaction proceeds? e How does the mass of Al(s) change as the reaction proceeds?arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forward
- Calcium metal can be obtained by the direct electrolysis of molten CaCl2, at a voltage of 3.2 V. (a) How many joules of electrical energy are required to obtain 12.0 1b of calcium? (b) What is the cost of the electrical energy obtained in (a) if electrical energy is sold at the rate of nine cents per kilowatt hour?arrow_forwardA lead storage battery delivers a current of 6.00 A for one hour and 22 minutes at a voltage of 12.0 V. (a) How many grams of lead are converted to PbSO4? (b) How much electrical energy is produced in kilowatt hours?arrow_forwardThe following two half-reactions arc involved in a voltaic cell. At standard conditions, what species is produced at each electrode? Ag++eAgE=0.80VNi2++2eNiE=0.25Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY