![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_largeCoverImage.gif)
Use the following half-equations to write three spontaneous reactions. Justify your answers by calculating E° for the cells.
1.
2.
3.
![Check Mark](/static/check-mark.png)
Interpretation:
Using the given half-equations, the three spontaneous reactions needs to be determined by showing the value E° for the cells.
Concept introduction:
A reducing or a reductant is a species that loses electron/s and gets oxidized in the chemical reaction. The reducing agent is usually in one of its lower probable oxidation states, is recognized as the electron donor. Since, the reducing agent in the redox reaction loses electron/s, reducing agent gets oxidized.
An oxidizing agent is an agent which gains the electrons and get reduced within the chemical reaction. It is also recognized as electron acceptor; it is usually in one of its higher probable oxidation states so that it can reduce after accepting electron/s.
Spontaneity of a reaction is dependent on the free energy sign that is
Since,
Here, n = number of electrons involved in reaction and F is faraday constant.
If the value of E° for a reaction is positive, then the reaction occurs spontaneous.
Answer to Problem 39QAP
The three spontaneous reactions are as follows:
(a)
(b)
(c)
Explanation of Solution
Given Information:
The three half-equations are given as follows:
Suppose cell consisting half-equation (2) as oxidation half-reaction and half-equation (1) as reduction half-reaction.
Balancing the electrons in above two reaction and then adding the two equations to get overall cell reaction.
The value of E° for a cell is the sum of standard reduction as well as standard oxidation potentials.
Since, the value of E° for the cell is positive, the overall cell reaction is spontaneous.
Suppose cell consisting half-equation (3) as oxidation half-reaction and half-equation (1) as reduction half-reaction.
Balancing the electrons in above two reaction and then adding the two equations to get overall cell reaction.
The value of E° for a cell is the sum of standard reduction as well as standard oxidation potentials.
Since, the value of E° for the cell is positive, the overall cell reaction is spontaneous.
Suppose cell consisting half-equation (3) as oxidation half-reaction and half-equation (1) as reduction half-reaction.
Balancing the electrons in above two reaction and then adding the two equations to get overall cell reaction.
The value of E° for a cell is the sum of standard reduction as well as standard oxidation potentials.
Since, the value of E° for the cell is positive, the overall cell reaction is spontaneous.
Thus, the three spontaneous reactions will be:
(a)
(b)
(c)
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: Principles and Reactions
- Add curved arrows to the reactants in this reaction. A double-barbed curved arrow is used to represent the movement of a pair of electrons. Draw curved arrows. : 0: si H : OH :: H―0: Harrow_forwardConsider this step in a radical reaction: Br N O hv What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. O primary Otermination O initialization O electrophilic O none of the above × ☑arrow_forwardNonearrow_forward
- Can I get a drawing of what is happening with the orbitals (particularly the p orbital) on the O in the OH group? Is the p orbital on the O involved in the ring resonance? Why or why not?arrow_forward1) How many monochlorination products-including stereochemistry- are there for the molecule below:arrow_forwardSelect an amino acid that has and N-H or O-H bond in its R-group (you have 8 to choose from!). Draw at least two water molecules interacting with the R-group of the amino acid.arrow_forward
- Is this aromatic?arrow_forwardCHEM2323 E Tt PS CH03 Draw and name all monobromo derivatives of pentane, C5H11Br. Problem 3-33 Name: Draw structures for the following: (a) 2-Methylheptane (d) 2,4,4-Trimethylheptane Problem 3-35 (b) 4-Ethyl-2,2-dimethylhexane (e) 3,3-Diethyl-2,5-dimethylnonane (c) 4-Ethyl-3,4-dimethyloctane 2 (f) 4-Isopropyl-3-methylheptane KNIE>arrow_forwardProblem 3-42 Consider 2-methylbutane (isopentane). Sighting along the C2-C3 bond: (a) Draw a Newman projection of the most stable conformation. (b) Draw a Newman projection of the least stable conformation. Problem 3-44 Construct a qualitative potential-energy diagram for rotation about the C-C bond of 1,2-dibromoethane. Which conformation would you expect to be most stable? Label the anti and gauche conformations of 1,2- dibromoethane. Problem 3-45 Which conformation of 1,2-dibromoethane (Problem 3-44) would you expect to have the largest dipole moment? The observed dipole moment of 1,2-dibromoethane is µ = 1.0 D. What does this tell you about the actual conformation of the molecule?arrow_forward
- Gas Law Studies 1. Mass of zinc Determination of 0.899 2) Moles of zinc 0.01361 mol 3.) Moles of hydrogen 00? ← I was told to calculate this number from mole of zinc. 350m So does that mean it will be 0.01361 mol too? 4 Volume of water collected (mL) 5) VL of water collected (Liters) 0.350 L 6) Temp of water collected (°C) 7) Temp of water collected (°K) 8) Atmospheric pressure (mm) 9) Vapor pressure of water (mm) 10) Corrected pressure of hydrogen 20% 29°C 764.0mm Hg (mm) 17.5mm 11) Corrected pressure of hydrogen (atm) 12) Experimentally calculated value of 19 13. Literature value of R 14) % Error 15) Suggest reasons for the % error (#14)arrow_forwardNo wedge or dashes. Do proper structure. Provide steps and explanation.arrow_forward10 Question (1 point) Draw curved arrow notation to indicate the proton transfer between NaOH and CH3CO₂H. 2nd attempt :0- H See Periodic Table See Hint Draw the products of the proton transfer reaction. Don't add a + sign between the products.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)