EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 65SDP
The design shown in Fig. P16.65 is proposed for a metal tray, the main body of which is made from cold-rolled sheet steel. Noting its features and that the sheet is bent in two different directions, comment on various manufacturing considerations. Include factors such as anisotropy of the rolled sheet, its surface texture, the bend directions, the nature of the sheared edges, and the way the handle is snapped in for assembly.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
• In a sheet metal forming press the shape to be formed is
hemispherical cup of radius 15 cm in 2mm thick mild steel sheet.
The force required to deform sheet is 8 kN. The forming hammer
should approach job from a distance of 30 cm. The production rate
required is 240 components/hr. Calculate and suggest the
following specifications of the various hydraulic components used:
a) Hydraulic cylinder (bore & length)
b) Pump pressure and flow rate
c) Electric motor HP considering 75% pump efficiency
d) Reservoir size
e) Size of pump inlet and discharge tubing
Question 2. It is reduced to 80 mm with forging by stacking a part with a height of 120 mm and a
diameter of 75 mm. The friction coefficient between the workpiece and the mold is 0.13. The flow
curve of the workpiece is defined by a strength coefficient of 165 MPa and a ping-top of
0.24. Calculate the force during the process at the moments given below and obtain the
force-workpiece height graph
(1) as soon as it reaches the flow point (flow unit shape change = 0.002),
(2) height h = 115 mm,
(3) height h = 110 mm,
(4) height h = 105 mm,
(5) height h = 100 mm,
(6) height h = 95 mm,
(7) height h = 90 mm,
(8) height h = 85 mm,
(9) height h = 80 mm,
In a sheet metal forming press, the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild
steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance
of 30 cm. The production rate required is 240 components/hr.
Calculate and suggest the following specifications of the various hydraulic components used:
a. Hydraulic cylinder (bore & length);
b. Pump pressure and flow rate;
c. Electric motor HP considering 75% pump efficiency;
d. Reservoir size; and
e. Size of pump inlet and discharge tubing.
Chapter 16 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. In the manufacture of automotive-body panels from carbon-steel sheet, stretcher strains (Lueders bands) are observed, which detrimentally affect surface finish. How can stretcher strains be eliminated? Explain with appropriate sketches. Also discuss how wrinkles in a deep drawing operation can be eliminated.arrow_forwardplease answer to both of these parts of the question, thanks (a) Explain the advantage of corner radii of punch and die in Sheet Metal Drawing Process. (b) Explain the disadvantages of Tube Drawing process in which mandrel is not used.arrow_forwardExplain the differences that you may observe between products made of sheet metals and those made by casting and forging.arrow_forward
- 1. A round wire made from 1020 carbon steel is being drawn from a diameter of 12.5 mm to 9.5 mm in a draw die of 10°. For a coefficient of friction of 0.15, calculate required drawing force. 2. How would the extrusion process be effected if the die angle is increased?arrow_forwardA compound die is used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 3.2 mm thick. The outside diameter of the washer is 25.0 mm, and the inside diameter is 12.0 mm. Determine (a) the punch and die sizes for the blanking and punching operations, (b) the force required to perform the blanking and punching operation under the following conditions: (a) blanking and punching occur simultaneously and (b) the punches are staggered so that punching occurs first, then blanking. The aluminum has a tensile strength = 350 MPa.arrow_forwardA solid cylindrical slug made of 304 stainless steel is 150 mm in diameter and 100 mm high. It is reduced in height by 50% at room temperature by opendie forging with flat dies. Assuming that the coefficient of friction is 0.2 and the flow stress of this material is 1000 MPa, calculate the forging force at the end of the stroke. Manufacturing processesarrow_forward
- * A cylindrical workpiece made of 1100-0 Aluminum that is 18 in high and 16 in in diameter and is to be reduced in height by 25% by open-die forging. Let the coefficient of friction be 0.15. K=20 mpa,n=0.35, Calculate the forging force.arrow_forward4) Make a summary of the types of defects found in sheet-metal forming processes, and include brief comments on the reason(s) for each defect.arrow_forwardConsider the extrusion of a cylindrical billet, and compute the following. Assume the starting billet to have a length of 0.3m and a diameter of 15cm. This is extruded into a cylindrical product that is 3cm in diameter and 7.5cm long. Neglecting the areas on the two ends, compute the ratio between the product surface area (wraparound cylinder) and the surface area of the starting billet. How would this ratio change if the product were a square with the same corss-sectional area as that of the 3cm diameter circle?arrow_forward
- A cup of 5o mm diameter and 20 mm height is to be produced by drawing from a 1.5 mm thick sheet metal. What is the maximum drawing force ? If ultimate tensile strength of metal is 650 MPa.arrow_forwardQ#4: (b) Explain the disadvantages of Tube Drawing process in which mandrel is not used.arrow_forward4)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License