Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 62P
An electric stove burner has surface area 325 cm2 and emissivity e = 1. The burner consumes 1500 W and is at 900 K. If room temperature is 300 K, what fraction of the burner’s heat loss is from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electric stove burner has surface area 325 cm² and emissivity e = 1. The
burner consumes 1500 W and is at 900 K. If room temperature is 300 K, what
fraction of the burner's heat loss is from radiation?
A classroom has dimensions 8.00 m x 10.00 m x 3.00 m. A 1000 W electric space
heater is being used to warm the room from 5.00°C to 20.00°C on a cold morning. If
the density of air is 1.29 kg/m°, and the specific heat capacity of air is 1004 J/(kg-K),
how long will it take to heat the room? Assume no loss of thermal energy to the
surroundings.
A) 1.30 minutes
B) 241 minutes
C) 45.3 minutes
O D) 77.7 minutes
What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22.0ºC . The person has a normal skin temperature of 33.0ºC and a surface area of 1.50 m2 . The emissivity of skin is 0.97 in the infrared, where the radiation takes place.
Chapter 16 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 16.1 - Is there (a) no temperature, (b) one temperature,...Ch. 16.2 - A hot rock with mass 250 g is dropped into an...Ch. 16.3 - The figure shows three slabs with the same...Ch. 16.3 - Prob. 16.4GICh. 16.4 - A houses thermostat fails, leaving the furnace...Ch. 16 - If system A is not in thermodynamic equilibrium...Ch. 16 - Does a thermometer measure its own temperature or...Ch. 16 - Compare the relative sizes of the kelvin, the...Ch. 16 - If you put a thermometer in direct sunlight, what...Ch. 16 - Why does the temperature in a stone building...
Ch. 16 - Why do large bodies of water exert a...Ch. 16 - A Thermos bottle consists of an evacuated,...Ch. 16 - Stainless-steel cookware often has a layer of...Ch. 16 - Prob. 9FTDCh. 16 - Prob. 10FTDCh. 16 - Glass and fiberglass are made from the same...Ch. 16 - To keep your hands warm while skiing, you should...Ch. 16 - Since Earth is exposed to solar radiation, why...Ch. 16 - Global warming at Earths surface is generally...Ch. 16 - In its 2014 report, the Intergovernmental Panel on...Ch. 16 - A Canadian meteorologist predicts an overnight low...Ch. 16 - Normal room temperature is 68F. Whats this in...Ch. 16 - Prob. 18ECh. 16 - At what temperature do the Fahrenheit and Celsius...Ch. 16 - The normal boiling point of nitrogen is 77.3 K....Ch. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Prob. 23ECh. 16 - Whats the specific heat of a material if it takes...Ch. 16 - The average human diet contains about 2000 kcal...Ch. 16 - Prob. 26ECh. 16 - You bring a 350-g wrench into the house from your...Ch. 16 - Prob. 28ECh. 16 - Building heat loss in the United States is usually...Ch. 16 - Find the heat-loss rate through a slab of (a) wood...Ch. 16 - The top of a steel wood stove measures 90 cm by 40...Ch. 16 - Youre a builder whos advising a homeowner to have...Ch. 16 - An 8.0 m by 12 m house is built on a concrete slab...Ch. 16 - Find the -factor for a wall that loses 0.040 Btu...Ch. 16 - Compute the -factors for 1-inch thicknesses of...Ch. 16 - A horseshoe has surface area 50 cm2, and a...Ch. 16 - An oven loses energy at the rate of 14 W per C...Ch. 16 - Youre having your homes heating system replaced,...Ch. 16 - The filament of a 100-W lightbulb is at 3.0 kK....Ch. 16 - A typical human body has surface area 1.4 nr and...Ch. 16 - A constant-volume gas thermometer is filled with...Ch. 16 - A constant-volume gas thermometer is at 55-kPa...Ch. 16 - In Fig. 16.2s gas thermometer, the height h is...Ch. 16 - Prob. 44PCh. 16 - Typical fats contain about 9 kcal per gram. If the...Ch. 16 - A circular lake 1.0 km in diameter is 10 m deep...Ch. 16 - How much heat is required to raise an 800-g copper...Ch. 16 - Initially, 100 g of water and 100 g of another...Ch. 16 - Prob. 49PCh. 16 - Two neighbors return from Florida to find their...Ch. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - Prob. 53PCh. 16 - The temperature of the eardrum provides a reliable...Ch. 16 - Prob. 55PCh. 16 - Your young niece complains that her cocoa, at 90C,...Ch. 16 - A piece of copper at 300C is dropped into 1.0 kg...Ch. 16 - While camping, you boil water to make spaghetti....Ch. 16 - A biology labs walk-in cooler measures 3.0 m by...Ch. 16 - One end of an iron rod 40 cm long and 3.0 cm in...Ch. 16 - Prob. 61PCh. 16 - An electric stove burner has surface area 325 cm2...Ch. 16 - An electric current passes through a metal strip...Ch. 16 - Youre considering purchasing a new sleeping bag...Ch. 16 - A blacksmith heats a 1.1-kg iron horseshoe to...Ch. 16 - Whats the power output of a microwave oven that...Ch. 16 - A cylindrical log 15 cm in diameter and 65 cm long...Ch. 16 - A blue giant star whose surface temperature is 23...Ch. 16 - Prob. 69PCh. 16 - A black wood stove with surface area 4.6 nr is...Ch. 16 - Estimate the average temperature on Pluto,...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - In a cylindrical pipe where area isnt constant....Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - Use the method outlined in Problem 76 to show that...Ch. 16 - A house is at 20C on a winter night when the...Ch. 16 - A more realistic approach to the solar greenhouse...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
27. A +7.5 nC point charge and a –2.0 nC point charge are 3.0 cm apart. What is the electric field strength at ...
College Physics: A Strategic Approach (3rd Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
SCIENTIFIC INQUIRY You are handed a mystery pea plant with tall stems and axial flowers and asked to determine ...
Campbell Biology (11th Edition)
Examine the following diagrams of cells from an organism with diploid number 2n = 6, and identify what stage of...
Genetic Analysis: An Integrated Approach (3rd Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardA 0,244 m thick furnace wall is made of material with a thermal conductivity of 1.30 W / m.K. In order for the heat loss from the furnace to be 1130 W / m2, the wall will be insulated from the outside with a material with an average thermal conductivity of k: 0,346 W / m.K. Internal surface temperature is 1588 K and external surface temperature is 219 K. Calculate the required insulation thicknessarrow_forwardA steam pipe is covered with 1.25 cm thick insulating material of thermal conductivity 0.200 W / m. ° C. How much energy is lost every second when the steam is at 200 ° C and the surrounding air is at 20 ° C? The pipe has a circumference of 950 cm and a length of 68 m. Neglect losses through the ends of the pipe.arrow_forward
- While swimming, conduction can play a big role in heat loss from the body. The body of one swimmer has a total surface area of 1.80 m2 and an average thickness of 1.60 mm. The skin's thermal conductivity is 0.370 W/m-K. If the water's temperature is 20.0°C, and the blood reaching the inner surface of the skin is at 37.0°C, what is the rate of energy loss for that person through conduction?arrow_forwardYou are insulating a metal pipe carrying a hot fluid. The outside Diameter of the pipe is 3.5 cm, and the pipe has a length of 7.7 meters. Due to the fluid inside the pipe, the outside surface of the metal fluid pipe is kept at a constant temperature of 85.0°C. The metal pipe is inserted inside of a thin-wall circular tube, which has an inside diameter of 11.2 cm (ignore the resistance of the thin-wall circular tube). The space between the outside of the hot metal pipe and the inside of the thin-wall circular tube is filled with foam insulation, k = 0.036 W/m-K. The outside of the thin-walled circular tube is kept at a constant temperature of 28.0°C. Due to a manufacturing error, the metal pipe was not centered inside the thin-wall tube when the foam insulation was added, but was instead installed with an eccentricity of 2.0 cm (i.e. the center of the metal pipe is 2.0 cm distance from the center of the thin-walled circular tube). Calculate the increase in the heat transfer rate due to…arrow_forwardA student is trying to decide what to wear.His bedroom is at 20.0 degrees Celcius.His skin Temperature is 25 degrees Celsius.The area of his exposed skin is 1.50 square mitres.People all over the world have dark skin with emessivity about 0.900.Find the net energy transfer from his body by radiation in 10.0 minutesarrow_forward
- A concrete slab is 12.0 cm thick and has an area of 5.00 m2. Electric heating coils are installed under the slab to melt the ice on the surface in the winter months. What minimum power must be supplied to the coils to maintain atemperature difference of 20.0°C between the bottom of the slab and its surface? Assume all the energy transferred is through the slab.arrow_forwardA flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has a surface area of 2 m2 with emissivity and absorptivity of 0.9. The surface temperature of the absorber is 35°C, and solar radiation is incident on the absorber at 500 W/m2 with a surrounding temperature of 0°C. Convection heat transfer coefficient at the absorber surface is 5 W/m2∙K, while the ambient temperature is 25°C. Net heat rate absorbed by the solar collector heats the water from an inlet temperature (Tin) to an outlet temperature (Tout). If the water flow rate is 5 g/s with a specific heat of 4.2 kJ/kg∙K, determine the temperature rise of the water.arrow_forwardA solar collector is placed in direct sunlight where it absorbs energy at the rate of 840 J/s for each square meter of its surface. The emissivity of the solar collector is e = 0.66. What equilibrium temperature does the collector reach? Assume that the only energy loss is due to the emission of radiation.arrow_forward
- Hot oil is to be cooled by water in a one-shell-pass and eight-tube-passes heat exchanger. The tubes are thin-walled and are made of copper with an internal diameter of 1.4 cm. The length of each tube pass in the heat exchanger is 5 m, and the overall heat transfer coefficient is 310 W/m2?K. Water flows through the tubes at a rate of 0.2 kg/s, and the oil through the shell at a rate of 0.3 kg/s. The water and the oil enter at temperatures of 20°C and 150°C, respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil.arrow_forwardJill takes in 0.0140 mol of air in a single breath. The air is taken in at 20.0°C and exhaled at 35.0°C. Her respiration rate is (1.30x10^1) breaths per minute. At what average rate does heat leave her body due to the temperature increase of the air? Provide your answer to three significant figures. HINT: Use the molar specific heat at constant volume to find the heat loss, where Cv = 5R/2 (for an ideal diatomic gas).arrow_forwardA pipe with a 1.5 cm in diameter and 10 min length is gaining 800 W/m2 constant heat from its outer surface. Water enters the pipe at 25 °C with velocity of 0.1 m/s. What is the wall temperature at the exit plane of the pipe? Assume that all gaining heat is transferring the water. For water: k = 0.6 W/mK, ν = 0.75x10-6 m2/s, ρ = 1000 kg/m3, cp = 4187 J/kgK, Pr = 6.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY