Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 63P
An
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22.0ºC . The person has a normal skin temperature of 33.0ºC and a surface area of 1.50 m2 . The emissivity of skin is 0.97 in the infrared, where the radiation takes place.
A classroom has dimensions 8.00 m x 10.00 m x 3.00 m. A 1000 W electric space
heater is being used to warm the room from 5.00°C to 20.00°C on a cold morning. If
the density of air is 1.29 kg/m°, and the specific heat capacity of air is 1004 J/(kg-K),
how long will it take to heat the room? Assume no loss of thermal energy to the
surroundings.
A) 1.30 minutes
B) 241 minutes
C) 45.3 minutes
O D) 77.7 minutes
An incandescent light bulb has a tungsten filament that is heated to a temperature of 3.00 x103 K when an electric current passes
through it. If the surface area of the filament is approximately 1.00 x 10-4 m? and it has an emissivity of 0.370, what is the power
radiated by the bulb?The Stefan-Boltzmann constant (0) is 5.670 x 10-8 W/(m 2. k4).
Thank u!
Chapter 16 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 16.1 - Is there (a) no temperature, (b) one temperature,...Ch. 16.2 - A hot rock with mass 250 g is dropped into an...Ch. 16.3 - The figure shows three slabs with the same...Ch. 16.3 - Prob. 16.4GICh. 16.4 - A houses thermostat fails, leaving the furnace...Ch. 16 - If system A is not in thermodynamic equilibrium...Ch. 16 - Does a thermometer measure its own temperature or...Ch. 16 - Compare the relative sizes of the kelvin, the...Ch. 16 - If you put a thermometer in direct sunlight, what...Ch. 16 - Why does the temperature in a stone building...
Ch. 16 - Why do large bodies of water exert a...Ch. 16 - A Thermos bottle consists of an evacuated,...Ch. 16 - Stainless-steel cookware often has a layer of...Ch. 16 - Prob. 9FTDCh. 16 - Prob. 10FTDCh. 16 - Glass and fiberglass are made from the same...Ch. 16 - To keep your hands warm while skiing, you should...Ch. 16 - Since Earth is exposed to solar radiation, why...Ch. 16 - Global warming at Earths surface is generally...Ch. 16 - In its 2014 report, the Intergovernmental Panel on...Ch. 16 - A Canadian meteorologist predicts an overnight low...Ch. 16 - Normal room temperature is 68F. Whats this in...Ch. 16 - Prob. 18ECh. 16 - At what temperature do the Fahrenheit and Celsius...Ch. 16 - The normal boiling point of nitrogen is 77.3 K....Ch. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Prob. 23ECh. 16 - Whats the specific heat of a material if it takes...Ch. 16 - The average human diet contains about 2000 kcal...Ch. 16 - Prob. 26ECh. 16 - You bring a 350-g wrench into the house from your...Ch. 16 - Prob. 28ECh. 16 - Building heat loss in the United States is usually...Ch. 16 - Find the heat-loss rate through a slab of (a) wood...Ch. 16 - The top of a steel wood stove measures 90 cm by 40...Ch. 16 - Youre a builder whos advising a homeowner to have...Ch. 16 - An 8.0 m by 12 m house is built on a concrete slab...Ch. 16 - Find the -factor for a wall that loses 0.040 Btu...Ch. 16 - Compute the -factors for 1-inch thicknesses of...Ch. 16 - A horseshoe has surface area 50 cm2, and a...Ch. 16 - An oven loses energy at the rate of 14 W per C...Ch. 16 - Youre having your homes heating system replaced,...Ch. 16 - The filament of a 100-W lightbulb is at 3.0 kK....Ch. 16 - A typical human body has surface area 1.4 nr and...Ch. 16 - A constant-volume gas thermometer is filled with...Ch. 16 - A constant-volume gas thermometer is at 55-kPa...Ch. 16 - In Fig. 16.2s gas thermometer, the height h is...Ch. 16 - Prob. 44PCh. 16 - Typical fats contain about 9 kcal per gram. If the...Ch. 16 - A circular lake 1.0 km in diameter is 10 m deep...Ch. 16 - How much heat is required to raise an 800-g copper...Ch. 16 - Initially, 100 g of water and 100 g of another...Ch. 16 - Prob. 49PCh. 16 - Two neighbors return from Florida to find their...Ch. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - Prob. 53PCh. 16 - The temperature of the eardrum provides a reliable...Ch. 16 - Prob. 55PCh. 16 - Your young niece complains that her cocoa, at 90C,...Ch. 16 - A piece of copper at 300C is dropped into 1.0 kg...Ch. 16 - While camping, you boil water to make spaghetti....Ch. 16 - A biology labs walk-in cooler measures 3.0 m by...Ch. 16 - One end of an iron rod 40 cm long and 3.0 cm in...Ch. 16 - Prob. 61PCh. 16 - An electric stove burner has surface area 325 cm2...Ch. 16 - An electric current passes through a metal strip...Ch. 16 - Youre considering purchasing a new sleeping bag...Ch. 16 - A blacksmith heats a 1.1-kg iron horseshoe to...Ch. 16 - Whats the power output of a microwave oven that...Ch. 16 - A cylindrical log 15 cm in diameter and 65 cm long...Ch. 16 - A blue giant star whose surface temperature is 23...Ch. 16 - Prob. 69PCh. 16 - A black wood stove with surface area 4.6 nr is...Ch. 16 - Estimate the average temperature on Pluto,...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - In a cylindrical pipe where area isnt constant....Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - Use the method outlined in Problem 76 to show that...Ch. 16 - A house is at 20C on a winter night when the...Ch. 16 - A more realistic approach to the solar greenhouse...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
58. Does a real automobile have constant acceleration? Measured data for a Porsche 944 Turbo at maximum acceler...
College Physics: A Strategic Approach (3rd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Why isn't FeBr3 used as a catalyst in the first step of the synthesis of 1,3,5-tribromobenzene?
Organic Chemistry (8th Edition)
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m . K and 0.020 W/m . K, respectively, while other tissues inside the body have conductivities of about 0.50 W/m . K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2.arrow_forwardThe thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m · K and 0.020 W/m · K respectively, while other tissues inside the body have conductivities of about 0.50 W/m · K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. Rskin m2 · K/W Rfat m2 · K/W Rtissue m2 · K/W R m2 · K/W (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2. Warrow_forwardThe thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m · K and 0.020 w/m · K respectively, while other tissues inside the body have conductivities of about 0.50 W/m · K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. m² - K/W Rskin m² . K/W Rfat m² - K/W Rtissue |m² - K/W R (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2.arrow_forward
- Researchers are conducting a study to quantity the thermal conductivity of a composite material. A square box is made from 1932 cm2 sheets of the composite insulating material that is 5.2 cm thick. A 125 W heater is placed inside the box. Sensors attached to the box show that the interior and exterior surfaces of one face have reached the constant temperatures of 71°C and 23°C. What is the thermal conductivity in W/m-K?arrow_forwardHomes are often insulated with fiberglass insulation in their walls and ceiling. The thermal conductivity of fiberglass is 0.040 W/m·K. Suppose that the total surface area of the walls and roof of a windowless house is 370 m2 and that the thickness of the insulation is 10 cm. At what rate does heat leave thehouse on a day when the outside temperature is 30°C colder than the inside temperature?arrow_forwardThermal energy is being transferred through a 0.8 mm layer of human skin at a rate of 1.1 x 104 W/m2. The room temperature is 27 °C.To reduce heat flux, the skin is wrapped with a clothing material. What should be the thickness of the clothing material covering the surface of this skin tissue to reduce the heat flux to half of its original value? What is the temperature at the skin-clothing material interface? Note: if you think you need to have more information to solve this problem, you can make assumptions. Please state them clearly in your answer, if you need to make such assumptions.And please explain step by step to the answer to better understandingarrow_forward
- An electric stove burner has surface area 325 cm² and emissivity e = 1. The burner consumes 1500 W and is at 900 K. If room temperature is 300 K, what fraction of the burner's heat loss is from radiation?arrow_forwardYou are insulating a metal pipe carrying a hot fluid. The outside Diameter of the pipe is 3.5 cm, and the pipe has a length of 7.7 meters. Due to the fluid inside the pipe, the outside surface of the metal fluid pipe is kept at a constant temperature of 85.0°C. The metal pipe is inserted inside of a thin-wall circular tube, which has an inside diameter of 11.2 cm (ignore the resistance of the thin-wall circular tube). The space between the outside of the hot metal pipe and the inside of the thin-wall circular tube is filled with foam insulation, k = 0.036 W/m-K. The outside of the thin-walled circular tube is kept at a constant temperature of 28.0°C. Due to a manufacturing error, the metal pipe was not centered inside the thin-wall tube when the foam insulation was added, but was instead installed with an eccentricity of 2.0 cm (i.e. the center of the metal pipe is 2.0 cm distance from the center of the thin-walled circular tube). Calculate the increase in the heat transfer rate due to…arrow_forwardSuppose a person is covered head to foot by wool clothing with an average thickness of d = 1.95 cm and is transferring energy by conduction through the clothing at the rate of Q / Δt = 45 W. What is the temperature difference, in terms of the quantities given in the problem statement, across the clothing? Denote the surface area of the wool by A and the thermal conductivity by k.arrow_forward
- A solar collector is placed in direct sunlight where it absorbs energy at the rate of 840 J/s for each square meter of its surface. The emissivity of the solar collector is e = 0.66. What equilibrium temperature does the collector reach? Assume that the only energy loss is due to the emission of radiation.arrow_forwardAt midday when a large construction site covered with black tarps is directly under the Sun, it receives 975 W of solar power per square meter of surface from the Sun. If this hot surface loses energy only by radiation back into the atmosphere, what is its equilibrium temperature (in K)? You may use an emissivity of e = 1 for a black surface.arrow_forwardA 0,244 m thick furnace wall is made of material with a thermal conductivity of 1.30 W / m.K. In order for the heat loss from the furnace to be 1130 W / m2, the wall will be insulated from the outside with a material with an average thermal conductivity of k: 0,346 W / m.K. Internal surface temperature is 1588 K and external surface temperature is 219 K. Calculate the required insulation thicknessarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY