Concept explainers
Fiberglass is a popular, economical, and fairly effective building insulation. It consists of fine glass fibers—often including recycled glass—formed loosely into rectangular slabs or rolled into blankets (Fig. 16.18). One side is often faced with heavy paper or aluminum foil. Fiberglass insulation comes in thicknesses compatible with common building materials—for example, 3.5 inch and 6 inch for wood-framed walls. Standard 6-inch fiberglass has an R-factor of 19.
Since fiberglass insulation is readily compressible, you could squash two slabs initially 6 inches wide into a 6-inch wall space. This would
- a. double the overall R-factor.
- b. increase the overall R-factor but not double it.
- c. decrease the overall R-factor.
- d. not change the overall R-factor.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Anatomy & Physiology (6th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- A small electric immersion heater is used to heat 94 g of water for a cup of instant coffee. The heater is labeled "81 watts" (it converts electrical energy to thermal energy at this rate). Calculate the time required to bring all this water from 21°C to 100°C, ignoring any heat losses. (The specific heat of water is 4186 J/kg.K.) Number Unitsarrow_forwardA photovoltaic panel with an efficiency of 19 % receives an average insolation of 168 W/m². Estimate the area of the panel if the PV panel is required to produce 1.2 x 10¹ kWh/y on average power.arrow_forward1034. The motion of a particle starting from rest is governed by the a-t curve shown in Fig. P-1034. Sketch the v-t and s-t curves. Determine the displacement at t = 9 sec. Ans. = 228 ft 8arrow_forward
- A 10-in nominal pipe (outside diameter = 10.75in) is covered with a composite pipe insulation consisting of 2.0 in of insulation I placed next to the pipe and 1.5 in of insulation II placed upon insulation I. Assume that the inner and outer surface temperatures of the composite insulation are 900F and 150F respectively, and that the thermal conductivity of material I is 0.05 BTU/hr-ft-F and for material II is 0.039 BTU/hr-ft-F. What is the individual thermal resistance of insulation I?arrow_forwardWhen air is inhaled, it quickly becomes saturated with water vapor as it passes through the moist upper airways. When a person breathes dry air, about 25 mg of water are exhaled with each breath. At 12 breaths/min, what is the rate of energy loss due to evaporation? Express your answer in both watts and Calories per day. At body temperature, the heat of vaporization ofwater is Lv = 24 × 105 J/kg.arrow_forwardDuring a plant visit, it was noticed that a 12-m-long section of a 10-cm-diameter steam pipe is completely exposed to the ambient air. The temperature measurements indicate that the average temperature of the outer surface of the steam pipe is 75°C when the ambient temperature is 5°C. There are also light winds in the area at 10 km/h. The emissivity of the outer surface of the pipe is 0.8, and the average temperature of the surfaces surrounding the pipe, including the sky, is estimated to be 0°C. Determine the amount of heat lost from the steam during a 10-h-long work day. Steam is supplied by a gas-fired steam generator that has an efficiency of 80 percent, and the plant pays $1.05/therm of natural gas. If the pipe is insulated and 90 percent of the heat loss is saved, determine the amount of money this facility will save a year as a result of insulating the steam pipes. Assume the plant operates every day of the year for 10 h. State your assumptions.arrow_forward
- Ice of mass 10.0 kg at 0.00° C is placed in an ice chest. The ice chest has 2.00 cm thick walls of thermal coductivity 1.00 x 10^-5 kcal/s-m-C° and a surface area of 1.30m^2. (a) How much heat must be absorbed by the ice before it melts? (b) If the outer surface of the ice chest is at 30.0° C, how long will it take for the ice to melt?arrow_forwardIce of mass 12.8 kg at 0°C is placed in an ice chest. The ice chest has 2.7 cm thick walls of thermal conductivity 0.07 W/m·K and a surface area of 1.29 m2. Express your answers with appropriate mks units. (a) How much heat must be absorbed by the ice during the melting process? (b) If the outer surface of the ice chest is at 39° C, how long will it take for the ice to melt?arrow_forwardThe vapor pressure is the pressure of the vapor phase of a substance when it is in equilibrium with the solid or liquid phase of the substance. The relative humidity is the partial pressure of water vapor in the air divided by the vapor pressure of water at that same temperature, expressed as a percentage. The air is saturated when the humidity is 100%. (a) The vapor pressure of water at 20.0°C is 2.34 × 10³ Pa. If the air temperature is 20.0°C and the relative humidity is 60%, what is the partial pressure of water vapor in the atmosphere (that is, the pressure due to water vapor alone)?arrow_forward
- The electric output of a power plant is 800 MW. Cooling water flows through the power plant at the rate 1.00 x 108 L/hr. The cooling water enters the plant at 11.0 °C and exits at 29.0 °C. What is the power plant's thermal efficiency? Express your answer as a percentage.arrow_forwardA sphere of radius 0.476 m, temperature 29.5°C, and emissivity 0.743 is located in an environment of temperature 66.7°C. At what rate does the sphere (a) emit and (b) absorb thermal radiation? (c) What is the sphere's net rate of energy exchange? (a) Number i Units (b) Number Units (c) Number i Unitsarrow_forwardThe solar panels are placed in an optimal position such that they receive a solar power of 1186kWh/m^2 per year1. The average solar cell has an efficiency of 20% and an average household in the Netherlands uses 2990kWh of electricity per year. The average solar panel has dimensions of 165x99cm. How many solar panels do you need?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning