Concept explainers
A more realistic approach to the solar greenhouse of Example 16.7 considers the time dependence of the solar input. A function that approximates the solar input is (40 Btu/h/ft2) sin2(πt/24), where t is the time in hours, with t = 0 at midnight. Then the greenhouse is no longer in energy balance, but is described instead by the differential form of Equation 16.3 with Q the time-varying energy input. Use computer software or a calculator with differential-equation-solving capability to find the time-dependent temperature of the greenhouse, and determine the maximum and minimum temperatures. Assume the same numbers as in Example 16.7, along with a heat capacity C = 1500 Btu/°F for the greenhouse. You can assume any reasonable value for the initial temperature, and after a few days your greenhouse temperature should settle into a steady oscillation independent of the initial value.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Anatomy & Physiology (6th Edition)
Microbiology: An Introduction
Microbiology with Diseases by Body System (5th Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- (a) In the deep space between galaxies, me density of atoms is as low as 106atoms/m3, and me temperature is a frigid 2.7 K. What is me pressure? (b) What volume (in m3) is occupied by 1 mol of gas? (c) If this volume is a cube, what is the length of its sides in kilometers?arrow_forward(a) At what temperature do the Fahrenheit and Celsius scales have the same numerical value? (b) At what temperature do the Fahrenheit and Kelvin scales have same numerical value?arrow_forward(a) Calculate the rate of heat conduction through a double-paned window that has a 150-m2 area and is made of two panes of 0.800 cm-thick glass separated by a 1.00 cm air gap. The inside surface temperature is 15.0 C, while that on the outside is 10.0 OC. (Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).arrow_forward
- (a) If the partial pressure of water vapor is 8.05 torr, what is the dew point? (760 torr = I atm 101, 325 Pa) (b) On a warn day when the air temperature is 35 and the dew point is 25 , what are the partial of the water in the air and the relative humidity?arrow_forwardIn the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forward(a) Why does the land lose heat more quickly at night than a body of water? (b) Deserts are very hot during the day and cold at night. Why is there such a large nocturnal temperature drop?arrow_forward
- Geologists measure conductive heat flow out of the earth by drilling holes (a few hundred meters deep) and measuring the temperature as a function of depth. Suppose that in a certain location the temperature increases by 20°C per kilometer of depth and the thermal conductivity of the rock is 2.5 W/m·K. What is the rate of heat conduction per square meter in this location? Assuming that this value is typical of other locations over all of earth's surface, at approximately what rate is the earth losing heat via conduction? (The radius of the earth is 6400 km.)arrow_forwardThe enthalpy of a system is given by the equation H=U+PV where U is the internal energy, P=pressure, and V=volume. In addition, the internal energy, U=Q+W where Q is the heat and W is the work. Suppose we want to find the rate of change in the enthalpy at constant pressure of 1.75 atm, what is the value when heat is absorbed by the system at a rate of 55 J/s and work is done by the system at a rate of 200 J/s when the change of volume is rated at 76 x 10^-5 m^3/s? 1. What is the change in heat with respect to time?2. What is the change in internal energy of the system with respect to time?3. What is the change in enthalpy of the system with respect to time?arrow_forwardYour answer is partially correct. An insulated Thermos contains 190 cm3³ of hot coffee at 80.0°C. You put in a 12.0g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg-K. The latent heat of fusion is 333 kJ/kg. The density of water is 1.00 g/cm³. Number 9.5 Unitsarrow_forward
- Your answer is partially correct. An insulated Thermos contains 130 cm3 of hot coffee at 88.0°C. You put in a 19.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg-K. The latent heat of fusion is 333 kJ/kg. The density of water is 1.00 g/cm³. Number i 52.11 Units C°arrow_forwardThermal energy is being transferred through a 0.8 mm layer of human skin at a rate of 1.1 x 104 W/m2. The room temperature is 27 °C.To reduce heat flux, the skin is wrapped with a clothing material. What should be the thickness of the clothing material covering the surface of this skin tissue to reduce the heat flux to half of its original value? What is the temperature at the skin-clothing material interface? Note: if you think you need to have more information to solve this problem, you can make assumptions. Please state them clearly in your answer, if you need to make such assumptions.And please explain step by step to the answer to better understandingarrow_forwardAn electronics device generates 30.5 W of heat energy during normal operation. The heat is dissipated from the top surface of the device to ambient air at 23°C. If the top surface area is 0.158 m2 and the convection heat transfer coefficient is 7.838 W/m2. K, what will be the surface temperature (in °C) of the device [round your final answer to one decimal place]? Air, T. T 00 Sarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning