![EBK CHEMISTRY FOR CHANGING TIMES](https://www.bartleby.com/isbn_cover_images/8220100663482/8220100663482_largeCoverImage.jpg)
Concept explainers
(a)
Interpretation:
The role of m-RNA in protein synthesis should be explained.
Concept Introduction:
The sequence of the amino acids in the protein is determined by the sequence of bases in DNA, and the relationship between these two sequences is called the genetic code.
The DNA molecules which occurs in the chromosomes found in the cell nucleus, usually exists as double helices. RNAs are usually single strands, but one RNA and one DNA can also form a double helix, which is known as hybridisation of RNA and DNA.
In this way a given DNA determines the base sequence in its complementary RNA. When the RNA strand is synthesised, the DNA-RNA double helix splits.
Three types of RNAs are synthesised in this way, each performing one type of function in protein biosynthesis. One RNA acts as messenger or informational RNA; this is mRNA. The second type of RNA is the transfer RNA, tRNA and the third type of RNA is the ribosomal RNA i.e. rRNA. The base composition of different mRNAs and different tRNAs vary, rRNAs show little bit variation. The variations are possible because RNA molecules are very much smaller than the DNA molecules and so several RNAs can be synthesised from a DNA, each RNA being synthesised on a specified part of DNA molecule. The process of protein synthesis can be shown by a single diagram as-
(b)
Interpretation:
The role of t-RNA in protein synthesis should beexplained.
Concept Introduction:
The sequence of the amino acids in the protein is determined by the sequence of bases in DNA, and the relationship between these two sequences is called the genetic code.
The DNA molecules which occurs in the chromosomes found in the cell nucleus, usually exists as double helices. RNAs are usually single strands, but one RNA and one DNA can also form a double helix, which is known as hybridisation of RNA and DNA.
In this way a given DNA determines the base sequence in its complementary RNA. When the RNA strand is synthesised, the DNA-RNA double helix splits. Three types of RNAs are synthesised in this way, each performing one type of function in protein biosynthesis. One RNA acts as messenger or informational RNA; this is mRNA. The second type of RNA is the transfer RNA, tRNA and the third type of RNA is the ribosomal RNA i.e. rRNA. The base composition of different mRNAs and different tRNAs vary, rRNAs show little bit variation. The variations are possible because RNA molecules are very much smaller than the DNA molecules and so several RNAs can be synthesised from a DNA, each RNA being synthesised on a specified part of DNA molecule.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 16 Solutions
EBK CHEMISTRY FOR CHANGING TIMES
- H2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward
- 1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forwardNonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forward
- Do the electrons on the OH participate in resonance with the ring through a p orbital? How many pi electrons are in the ring, 4 (from the two double bonds) or 6 (including the electrons on the O)?arrow_forwardPredict and draw the product of the following organic reaction:arrow_forwardNonearrow_forward
- Redraw the molecule below as a skeletal ("line") structure. Be sure to use wedge and dash bonds if necessary to accurately represent the direction of the bonds to ring substituents. Cl. Br Click and drag to start drawing a structure. : ☐ ☑ Parrow_forwardK m Choose the best reagents to complete the following reaction. L ZI 0 Problem 4 of 11 A 1. NaOH 2. CH3CH2CH2NH2 1. HCI B OH 2. CH3CH2CH2NH2 DII F1 F2 F3 F4 F5 A F6 C CH3CH2CH2NH2 1. SOCl2 D 2. CH3CH2CH2NH2 1. CH3CH2CH2NH2 E 2. SOCl2 Done PrtScn Home End FA FQ 510 * PgUp M Submit PgDn F11arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)