Two crystalline forms of white phosphorus are known. Both forms contain P4 molecules, but the molecules are packed together in different ways. The α form is always obtained when the liquid freezes. However, below −76.9°C, the α form spontaneously converts to the β form:
a. Predict the signs of ∆H and ∆S for this process.
b. Predict which form of phosphorus has the more ordered crystalline structure (has the smaller positional probability).
Trending nowThis is a popular solution!
Chapter 16 Solutions
Chemistry: An Atoms First Approach
Additional Science Textbook Solutions
Chemistry: The Molecular Nature of Matter
Inorganic Chemistry
Thermodynamics, Statistical Thermodynamics, & Kinetics
Organic Chemistry
EBK INTRODUCTION TO CHEMISTRY
- Define the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forwardThermodynamics provides a way to interpret everyday occurrences. If you live in northern climates, one common experience is that during early winter, snow falls but then melts when it hits the ground. Both the formation and the melting happen spontaneously. How can thermodynamics explain both of these seemingly opposed events?arrow_forward
- Given the following information at 25C, calculate G at 25C for the reaction 2A(g)+B(g)3C(g) Substance Hf(kJ/mol) S(J/molK) A(g) 191 244 B(g) 70.8 300 C(g) 197 164 a 956 kJ b 956 kJ c 346 kJ d 346 kJ e 1.03 103 kJarrow_forwardFor the reaction at 298 K, 2NO2(g)N2O4(g) the values of H and S are 58.03 kJ and 176.6 J/K, respectively. What is the value of G at 298 K? Assuming that H and S do not depend on temperature, at what temperature is G = 0? Is G negative above or below this temperature?arrow_forwardThrough photosynthesis, plants build molecules of sugar containing several carbon atoms from carbon dioxide. In the process, entropy is decreased. The reaction of CO2with formic acid to form oxalic acid provides a simple example of a reaction in which the number of carbon atoms in a compound increases: CO2(aq)+HCOOH(aq)H2C2O4(aq) (a) Calculate the standard entropy change for this reaction and discuss the sign of S . (b) How do plants carry out reactions that increase the number of carbon atoms in a sugar, given the changes in entropy for reactions like this?arrow_forward
- The combustion of acetylene, C2H2, is a spontaneous reaction given by the equation 2C2H2(g)+5O2(g)4CO2(g)+2H2O(l) As expected for a combustion, the reaction is exothermic. What is the sign of H? What do you expect for the sign of S? Explain the spontaneity of the reaction in terms of the enthalpy and entropy changes.arrow_forwardGiven the values of H and S, which of the following changes will be spontaneous at constant T and p? a. H = + 25 kJ, S = + 5.0 J/K, T = 300. K b. H = + 25 kJ, S = + 100. J/K, T = 300. K c. H = 10. kJ, S = + 5.0 J/K, T= 298 K d. H = 10.kJ, S =40.J/K, T = 200.Karrow_forwardWhat is entropy? Why is entropy important?arrow_forward
- At what temperatures will the following processes be spontaneous? a. H = 18 kJ and S = 60. J/K b. H = +18 kJ and S = + 60. J/K c. H = +18 kJ and S = 60. J/K d. H = 18 kJ and S = +60. J/Karrow_forwardOne statement of the second law of thermodynamics is that heat cannot be turned completely into work. Another is that the entropy of the universe always increases. How are these two statements related?arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning