The sign of Δ S ∘ is to be predicted in each case. Concept introduction: Entropy ( Δ S ∘ ) is the measure of degree of disorder or randomness. Increase in the randomness of the system leads to increase in the entropy (entropy is positive). The sign of entropy depends on the number of moles. If number of moles decreases, then sign of the entropy will be negative whereas, if the number of moles increases, the sign of entropy will be positive.
The sign of Δ S ∘ is to be predicted in each case. Concept introduction: Entropy ( Δ S ∘ ) is the measure of degree of disorder or randomness. Increase in the randomness of the system leads to increase in the entropy (entropy is positive). The sign of entropy depends on the number of moles. If number of moles decreases, then sign of the entropy will be negative whereas, if the number of moles increases, the sign of entropy will be positive.
Solution Summary: The author explains that the sign of DeltaScirc is to be predicted in each case.
Interpretation: The sign of
ΔS∘ is to be predicted in each case.
Concept introduction: Entropy
(ΔS∘) is the measure of degree of disorder or randomness. Increase in the randomness of the system leads to increase in the entropy (entropy is positive).
The sign of entropy depends on the number of moles. If number of moles decreases, then sign of the entropy will be negative whereas, if the number of moles increases, the sign of entropy will be positive.
(b)
Interpretation Introduction
Interpretation: The sign of
ΔS∘ is to be predicted in each case.
Concept introduction: Entropy
(ΔS∘) is the measure of degree of disorder or randomness. Increase in the randomness of the system leads to increase in the entropy (entropy is positive).
The sign of entropy depends on the number of moles. If number of moles decreases, then sign of the entropy will be negative whereas, if the number of moles increases, the sign of entropy will be positive.
(c)
Interpretation Introduction
Interpretation: The sign of
ΔS∘ is to be predicted in each case.
Concept introduction: Entropy
(ΔS∘) is the measure of degree of disorder or randomness. Increase in the randomness of the system leads to increase in the entropy (entropy is positive).
The sign of entropy depends on the number of moles. If number of moles decreases, then sign of the entropy will be negative whereas, if the number of moles increases, the sign of entropy will be positive.
(d)
Interpretation Introduction
Interpretation: The sign of
ΔS∘ is to be predicted in each case.
Concept introduction: Entropy
(ΔS∘) is the measure of degree of disorder or randomness. Increase in the randomness of the system leads to increase in the entropy (entropy is positive).
The sign of entropy depends on the number of moles. If number of moles decreases, then sign of the entropy will be negative whereas, if the number of moles increases, the sign of entropy will be positive.
1. This experiment is more about understanding the colligative properties of a solution rather than the determination of
the molar mass of a solid.
a. Define colligative properties.
b. Which of the following solutes has the greatest effect on the colligative properties for a given mass of pure water?
Explain.
(i) 0.01 mol of CaCl2
(ii) 0.01 mol of KNO3
(iii) 0.01 mol of CO(NH2)2
(an electrolyte)
(an electrolyte)
(a nonelectrolyte)
5. b. For Trials 2 and 3, the molar mass of the solute was 151 g/mol and 143 g/mol respectively.
a. What is the average molar mass of the solute ?
b. What are the standard deviation and the relative standard deviation (%RSD) for the molar mass of the solute ?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY