
Define the following:
a. spontaneous process
b. entropy
c. positional probability
d. system
e. surroundings
f. universe
(a)

Interpretation: The given term spontaneous process has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
A process which occurs without any interference or without any external force is termed as a spontaneous process.
An increase in the entropy of universe is the driving force for a spontaneous reaction.
(b)

Interpretation: The given term entropy has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
Entropy is a measure of molecular randomness or disorder. It describes the positions or energy levels available to a system in a given state.
Entropy is an important part of thermodynamics that tells about the disorganized energy of a system. It is termed as a measure of molecular randomness or disorder.
It describes the positions or energy levels available to a system in a given state.
(c)

Interpretation: The given term positional probability has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
Positional probability is the probability of occurrence of particular arrangements of a given state and it depends upon the number of configurations in space that yields a particular state.
(d)

Interpretation: The given term system has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system.
In physical chemistry, the universe is divided into two parts; system and surrounding. The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system.
(e)

Interpretation: The given term surroundings has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system. The surrounding comprises of the region that is present outside the system.
(f)

Interpretation: The given term universe has to be defined.
Concept introduction: Thermodynamics is associated with heat, temperature and its relation with energy and work. It helps us to predict whether a process will take place or not. But it gives no information about the time required for the process. The terms associated with thermodynamics are system, surrounding, entropy, spontaneity and many more.
Explanation of Solution
The area that includes the system and the surrounding is known as universe. The process that is being taken into account takes place in a particular part of universe. This particular part is known as the system. The surrounding comprises of the region that is present outside the system.
The system and the surroundings together are known as the universe.
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: An Atoms First Approach
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
HUMAN ANATOMY
General, Organic, and Biological Chemistry - 4th edition
Organic Chemistry
- 7.5 1.93 2.05 C B A 4 3 5 The Joh. 9 7 8 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 0.86 OH 10 4 3 5 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 CI 4 3 5 1 2 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 2.21 4.00 1.5 2.00 2.07 1.0 ppm 2.76arrow_forwardAssign the functional group bands on the IR spectra.arrow_forwardFind the pH of a 0.120 M solution of HNO2. Find the pH ignoring activity effects (i.e., the normal way). Find the pH in a solution of 0.050 M NaCl, including activityarrow_forward
- Please help me answer these three questions. Required info should be in data table.arrow_forwardDraw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each stereogenic center. Omit any byproducts. Bri CH3CH2O- (conc.) Draw the major organic product or products.arrow_forwardTartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH. How many mL of NaOH are needed to reach the first equivalence point? How many mL of NaOH are needed to reach the second equivalence point?arrow_forward
- Including activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M KBr.arrow_forwardIncluding activity, calculate the pH of a 0.010 M HCl solution with an ionic strength of 0.10 M.arrow_forward
- Can I please get the graph 1: Concentration vs. Density?arrow_forwardOrder the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




