
Concept explainers
(a)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(a)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(b)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(b)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(c)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(c)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(d)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(d)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(e)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(e)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(f)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(f)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(g)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(g)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base of
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(h)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(h)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base of
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(i)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(i)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base of
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(j)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(j)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base is
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(k)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(k)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base of
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(l)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(l)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base of
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
(m)
Interpretation:
For the given set of acids, formula for conjugated base has to be written.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton to give a deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
(m)

Explanation of Solution
The conjugate base of
To identify the conjugate base
The conjugate base of
Conjugate base is formed when a proton is removed from the Bronsted acid. The scheme for the formation of conjugate base for the given acid is shown above.
Want to see more full solutions like this?
Chapter 16 Solutions
General Chemistry
- ASP please....arrow_forwardNonearrow_forwardConsider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H Harrow_forward
- Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forwardWhich of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forward
- Based on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forwardDraw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





