
Concept explainers
(a)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(b)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(c)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(d)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(e)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(f)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 16 Solutions
General Chemistry
- Predict the major products of this organic reaction: H OH 1. LiAlH4 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. G C टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 CI MgCl ? Will the first product that forms in this reaction create a new CC bond? Yes No MgBr ? Will the first product that forms in this reaction create a new CC bond? Yes No G टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forward
- Predict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forward
- As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forwardgive example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward
- 2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





