Concept explainers
(a)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Example: Consider the following reaction.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(b)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(c)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(d)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(e)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
(f)
Interpretation:
In the given set of reactions acid-base conjugate pairs has to be identified.
Concept Introduction:
Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
When Bronsted base accepts a proton the protonated species is known as conjugate acid and when Bronsted acid loses a proton deprotonated species is known as conjugate base. The conjugated acid-base pair is present in opposite side of the reaction. In this the base has one proton less than the acid.
The acid-base conjugate pair for the given reaction.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
General Chemistry
- 3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- Nonearrow_forwardHowever, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forward
- C Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forwardFill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forward
- Relative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 20 NaоH 0103 Br (B) H2504 → (c) (A) 100- MS-NU-0547 80 40 20 31 10 20 100- MS2016-05353CM 80 60 100 MS-NJ-09-3 80 60 40 20 45 J.L 80 S1 84 M+ absent राग 135 137 S2 62 164 166 11 S3 25 50 75 100 125 150 175 m/zarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY