Concept explainers
A steady-flow combustion chamber is supplied with CO gas at 37°C and 110 kPa at a rate of 0.4 m3/min and air at 25°C and 110 kPa at a rate of 1.5 kg/min. Heat is transferred to a medium at 800 K, and the combustion products leave the combustion chamber at 900 K. Assuming the combustion is complete and T0 = 25°C, determine (a) the rate of heat transfer from the combustion chamber and (b) the rate of exergy destruction.
(a)
The rate of heat transfer from the combustion chamber.
Answer to Problem 93P
The rate of heat transfer from the combustion chamber is
Explanation of Solution
Determine the volume of the CO in the combustion chamber.
Here, the universal gas constant is
Determine the mass flow rate of the CO in the combustion chamber.
Here, the volume flow rate of the CO in the combustion chamber is
Determine the molar air-fuel ratio.
Here, the mass flow rate of the air is
Write the energy balance equation using steady-flow equation.
Here, the total energy entering the system is
Substitute
Here, the enthalpy of formation for product is
Determine the heat transfer per kg of CO.
Here, the molar mass of the CO is
Determine the rate of heat transfer.
Conclusion:
Perform unit conversion of temperature at state 1 from degree Celsius to Kelvin.
For air temperature enter in the combustion chamber,
For CO temperature enter in the combustion chamber,
From the Table A-1 “Molar mass, gas-constant, and critical-point properties”, obtain the value of molar mass for air and carbon monoxide and universal gas constant of CO as:
Substitute
Substitute
Substitute
Here, the number of mole of oxygen used per mole of carbon monoxide is
Write the combustion equation of 1 kmol for
Here, stoichiometric coefficient of air is
From the Table-21, 19, 18, and 20, obtain the enthalpy of formation, at 298 K, 310 K, and 900 K for
Substance | ||||
-110,530 | 8669 | 9014 | --- | |
0 | 8682 | --- | 27,928 | |
0 | 8669 | --- | 26,890 | |
-393,520 | 9364 | --- | 37,405 |
Substitute the value of substance in Equation (V).
Therefore the heat transfer for
Substitute
Substitute
Thus, the rate of heat transfer from the combustion chamber is
(b)
The exergy destruction from the combustion chamber.
Answer to Problem 93P
The exergy destruction from the combustion chamber is
Explanation of Solution
Write the expression for the relation of reversible work using the exergy balance on the combustion chamber.
In the ideal gas table the value of entropy for 1 atm is equal to 101.325 kPa of pressure. Each reactant of the entropy and the product is to be calculated at the partial pressure of the components which is equal to:
Here, the mole fraction of component
Write the expression for entropy generation during this process.
Write the combustion equation of Equation (VI)
Here, the entropy of the product is
Determine the entropy at the partial pressure of the components.
Here, the partial pressure is
Write the expression for rate of exergy destruction during this process.
Here, the thermodynamic temperature of the surrounding is
Conclusion:
The entropy calculation can be presented in tabular form as:
For reactant entropy,
Substance |
(T, 1 atm) | ||||
1 | 1.00 | 198.678 | 0.68 | 198.00 | |
0.637 | 0.21 | 205.04 | -12.29 | 138.44 | |
2.400 | 0.79 | 191.61 | -1.28 | 462.94 | |
For product entropy,
Substance |
(T, 1 atm) | ||||
1 | 0.2827 | 263.559 | -9.821 | 273.38 | |
0.137 | 0.0387 | 239.823 | -26.353 | 36.47 | |
2.400 | 0.6785 | 224.467 | -2.543 | 544.82 | |
Substitute
Substitute
Thus, the exergy destruction from the combustion chamber is
Want to see more full solutions like this?
Chapter 15 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- PROBLEM 15.225 The bent rod shown rotates at the constant rate @₁ = 5 rad/s and collar C moves toward point B at a constant relative speed u = 39 in./s. Knowing that collar C is halfway between points B and D at the instant shown, determine its velocity and acceleration. Answers: v=-45 +36.6)-31.2 k in./s āc = -2911-270} in./s² 6 in 20.8 in. 14.4 in.arrow_forwardNeed help, please show all work, steps, units and please box out and round answers to 3 significant figures. Thank you!..arrow_forwardNeed help, please show all work, steps, units and please box out and round answers to 3 significant figures. Thank you!...arrow_forward
- FL y b C Z Determine the moment about O due to the force F shown, the magnitude of the force F = 76.0 lbs. Note: Pay attention to the axis. Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 1.90 ft b 2.80 ft с 2.60 ft d 2.30 ft Mo 144 ft-lb = -212 × 1 + xk) ☑+212arrow_forward20 in. PROBLEM 15.206 Rod AB is connected by ball-and-socket joints to collar A and to the 16-in.-diameter disk C. Knowing that disk C rotates counterclockwise at the constant rate ₁ =3 rad/s in the zx plane, determine the velocity of collar A for the position shown. 25 in. B 8 in. Answer: -30 in/s =arrow_forwardB Z 001 2.5 ft PROBLEM 15.236 The arm AB of length 16 ft is used to provide an elevated platform for construction workers. In the position shown, arm AB is being raised at the constant rate de/dt = 0.25 rad/s; simultaneously, the unit is being rotated about the Y axis at the constant rate ₁ =0.15 rad/s. Knowing that 20°, determine the velocity and acceleration of Point B. Answers: 1.371 +3.76)+1.88k ft/s a=1.22 -0.342)-0.410k ft/s² Xarrow_forward
- F1 3 5 4 P F2 F2 Ꮎ Ꮎ b P 3 4 5 F1 The electric pole is subject to the forces shown. Force F1 245 N and force F2 = 310 N with an angle = 20.2°. Determine the moment about point P of all forces. Take counterclockwise moments to be positive. = Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 2.50 m b 11.3 m C 13.0 m The moment about point P is 3,414 m. × N- If the moment about point P sums up to be zero. Determine the distance c while all other values remained the same. 1.26 m.arrow_forwardZ 0.2 m B PROBLEM 15.224 Rod AB is welded to the 0.3-m-radius plate, which rotates at the constant rate ₁ = 6 rad/s. Knowing that collar D moves toward end B of the rod at a constant speed u = 1.3 m, determine, for the position shown, (a) the velocity of D, (b) the acceleration of D. Answers: 1.2 +0.5-1.2k m/s a=-7.21-14.4k m/s² A 0.25 m 0.3 marrow_forwardI am trying to code in MATLAB the equations of motion for malankovich orbitlal elements. But, I am having a problem with the B matrix. Since f matrix is 7x1 and a_d matrix has to be 3x1, the B matrix has to be 7x3. I don't know how that is possible. Can you break down the B matrix for me and let me know what size it is?arrow_forward
- I am trying to code the solution to the problem in the image in MATLAB. I wanted to know what is the milankovich constraint equation that is talked about in part b.arrow_forwardmylabmastering.pearson.com Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... P Pearson MyLab and Mastering Scoresarrow_forwardAir modeled as an ideal gas enters an insulated compressor at a temperature of 300 K and 100 kPa, and leaves at 600 kPa. The mass flowrate of air entering the compressor is 50 kg/hr, and the power consumed by the compressor is 3 kW. (Rair = 0.287 kJ/kg-K, k = 1.4, cp = 1.0045 kJ/kg-K, cv = 0.718 kJ/kg-K) Determine the isentropic exit temperature (Te,s) of the air in [K]. Determine the actual exit temperature (Te) of the air in [K]. Determine the isentropic efficiency of the compressor. (Answer: ηc,s = 93.3%) Determine the rate of entropy generated through the compressor in [kW/K]. (Answer: Ṡgen = 0.000397 kW/K)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY