CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15.7, Problem 115RP
To determine
Show that the work output of the Carnot heat engine will be maximum when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Steam at a pressure of 0.08 bar and a quality of 93.2% enters a shell-and-tube heat exchanger where it condenses on the outside of
tubes through which cooling water flows, exiting as saturated liquid at 0.08 bar. The mass flow rate of the condensing steam is 5.8 x
105 kg/h. Cooling water enters the tubes at 15°C and exits at 35°C with negligible change in pressure.
Neglecting stray heat transfer and ignoring kinetic and potential energy effects, determine the mass flow rate of the cooling water, in
kg/h, for steady-state operation.
mwater = i
eTextbook and Media
Save for Later
kg/h
Attempts: 0 of 5 used
Submit Answer
Refrigerant (known as R-134a) enters a heat exchanger at 100 kPa. The refrigerant is of 20% quality upon entering. It exits the heat exchanger as a saturated vapor also at 100kPa. An unknown liquid (specific heat capacity of 3.9 kJ/Kg.K) enters the heat exchanger at a rate of 1.1 kg/sec at 320.15 Kelvin. This unknown liquid exits at 278.15 degrees kelvin.
Find: The mass flow rate or the refrigerant [kg/sec]Q (the rate of heat transfer)
In a gas turbine power plant, air at 10°C and I bar is compressed to a
pressure of 4 bar by a compressor. The air is then heated in a 100%
efficient heat exchanger and in the combustion chamber to a
temperature of 700°C. heat exchanger and the combustion chamber
is 0.14 bar. Calculate the power plant efficiency.
Chapter 15 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 15.7 - What are the approximate chemical compositions of...Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 3PCh. 15.7 - Prob. 4PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - How does the presence of moisture in air affect...Ch. 15.7 - Prob. 7PCh. 15.7 - Prob. 8PCh. 15.7 - Prob. 9PCh. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 16PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 18PCh. 15.7 - Propane (C3H8) is burned with 75 percent excess...Ch. 15.7 - Propane fuel (C3H8) is burned with 30 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 22PCh. 15.7 - Prob. 23PCh. 15.7 - Ethane (C2H6) is burned with 20 percent excess air...Ch. 15.7 - Octane (C8H18) is burned with 250 percent...Ch. 15.7 - Prob. 26PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - Prob. 28PCh. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 30PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 33PCh. 15.7 - The fuel mixer in a natural gas burner mixes...Ch. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Determine the fuelair ratio when coal from...Ch. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - When are the enthalpy of formation and the...Ch. 15.7 - Prob. 43PCh. 15.7 - Prob. 44PCh. 15.7 - Prob. 45PCh. 15.7 - Prob. 46PCh. 15.7 - Prob. 48PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 53PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 56PCh. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - Prob. 60PCh. 15.7 - Prob. 61PCh. 15.7 - Prob. 62PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 66PCh. 15.7 - A gaseous fuel mixture that is 40 percent propane...Ch. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 70PCh. 15.7 - Prob. 71PCh. 15.7 - Prob. 72PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 74PCh. 15.7 - Prob. 75PCh. 15.7 - What is the adiabatic flame temperature of methane...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Ethyl alcohol [C2H5OH(g)] is burned with 200...Ch. 15.7 - Prob. 81PCh. 15.7 - Prob. 82PCh. 15.7 - Reconsider Prob. 1582. The combustion products are...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 85PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 88PCh. 15.7 - Reconsider Prob. 1588. The automobile engine is to...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 91PCh. 15.7 - n-Octane [C8H18(l)] is burned in the...Ch. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - n-Butane (C4H10) is burned with the stoichiometric...Ch. 15.7 - A gaseous fuel mixture of 60 percent propane...Ch. 15.7 - Calculate the higher and lower heating values of...Ch. 15.7 - Prob. 103RPCh. 15.7 - Methane gas (CH4) at 25C is burned steadily with...Ch. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Liquid propane [C3H8(l)] enters a combustion...Ch. 15.7 - Prob. 109RPCh. 15.7 - Prob. 110RPCh. 15.7 - Prob. 111RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 115RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - Prob. 117RPCh. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 126FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a thermal power plant, steam is obtained from the boiler at 70 bar and 450 °C. This steam is expanded in a high pressure (H.P) turbine to 25 bar and then reheated to 420°C at constant pressure. The steam is then expanded in the intermediate pressure (I.P) turbine. Part of the steam leaving the intermediate pressure turbine is taken to an open exchanger at 180°C (FW) and the remaining steam is taken to a low pressure (L.P) turbine, where it is expanded to 0.07 bar. The isentropic efficiency of the high pressure turbine is 78.5%, the intermediate pressure turbine is and the low pressure turbine has an efficiency of 83%. The boiler has a conversion efficiency of 72%. The mass flow rate of water in the boiler is 15 kg/s. For this system calculate:(a) The net power of the cycle.b) The thermal efficiency of the cycle.c) The amount of coal required each hour in the system.d) The hourly price of coal in the system. NOTE: the first thing to do is to locate the properties of the fluid at each…arrow_forwardB5arrow_forwardA heat engine using 120mg of helium as the working substance follows the cycle shown in the following figure. a. Determine the pressure, temperature, and volume of the gas at point 1, 2, and 3. b. What is the W, Q and DEint for each process 1->2, 2->3, and 3->1?arrow_forward
- Hot exhaust gases leaving an internal combustion engine at 400oC and 150 kPa at a rate of 0.8 kg/s are to be used to produce saturated steam at 200oC in an insulated heat exchanger. Water enters the heat exchanger at the ambient temperature of 20oC, and the exhaust gases leave the hear exchanger at 350oC. Determine (a) the rate of steam production, (b) the rate of exergy destruction in the heat exchanger, and (c) the second-law efficiency of the heat exchanger.arrow_forwardI do not understand how to fix state 3 with the given information. Without knowledge of state 3 or 4s (the 4th state if the process were actually isentropic) I don't see how it's possible to get temperature or enthalpy of state 3.arrow_forwardA stream of methane(CH4, Cp=4R) flowing at 3.0 kmol/min is isobarically heated in a well‑insulated heat exchanger from 30.00 ∘C to 1.50×102 ∘C. The second side of the exchanger is fed with saturated water vapor, which is isobarically cooled to a saturated liquid when it leaves. As unit operator, you have the choice of feeding high‑pressure steam (HPS) at 4.00 MPa or medium pressure steam (MPS) at 1.00 MPa. Assume Tsurr=27 ∘C. Find the mass flow rate of water and lost work if high pressure steam (HPS) is used. Find the mass flow rate of water and lost work if medium pressure steam (MPS) is used. Which is the better choice of steam to use?arrow_forward
- A fuel oil is burned with air in a boiler. Combustion produces 813 kW of thermal energy (heat), 65% of which is transferred as heat to boiler tubes that pass through the furnace. Combustion products pass from the furnace to a chimney at 550°C. The water enters the boiler as a liquid at 30°C and exits as a saturated steam at 20 bar (absolute).(a) Calculate the rate (kg/h) of steam production.(b) Use the steam tables to estimate the volumetric flow of the steam produced.(c) What happens to the 35% of thermal energy released by combustion that is not used to produce steam?arrow_forwardPLEASE ANSWER THIS QUESTION ASAP!!!arrow_forwardIn a gas turbine plant, the pressure ratio, through which air at 15°C is compressed, is 6. The same air is then heated to a maximum permissible temperature of 750°C first in a heat exchanger which is 75% efficient and then in the combustion chamber. The same air at 750 C is expanded in two stages such that expansion work is maximum. The air is reheated to 750°C after the first state. Determine the cycle thermal efficiency, the work ratio and the net shaft work per kg of air. The efficiencies may be assumed to be 80% and 85% for the compressor and turbine respectively.e) Air enters the compressor of a gas turbinearrow_forward
- Steam enters the turbine of a cogeneration plant at 6 MPa and 550 degrees * C . One-third of the steam is extracted from the turbine at 1400 kPa pressure for process heating. The remaining steam continues to expand to 20 kPa. The extracted steam is then condensed and mixed with feedwater at constant pressure and the mixture is pumped to the boiler pressure of 6 MPaThe mass flow rate of steam through the boiler is 30 kg/s. Disregarding any pressure drops and heat losses in the piping, and assuming the turbine and the pump to be isentropic, determine (a) the net power produced(b) the utilization factor of the plant, (c) the exergy destruction associated with the process heating, and (d ) the entropy generation associated with the process in the boiler. Assuming a source temperature of 1000 K and a sink temperature of 298 Karrow_forwardA medium size power station is used to produce 30 MW net power for a refinery. The station uses steam as the operating fluid and operates according to the Carnot cycle between the pressure limits of 0.4 bar and 35 bar. Steam enters the boiler as a saturated liquid and leaves it as a dry saturated vapour. ist t Reneric o "nd h Ts diaar ntion of s) (ii) Determine the dryness fraction of the steam that is fed to the condenser. (4 marks) (iv) Determine the specific enthalpy values at the four key points of the cycle. (6 marks) Calculat "Fic of the cycle (5 Ma, KS) (vi) Determine the thermal efficiency of the cycle. (1 mark) (vii) Using the highest and lowest temperature values in the cycle, re- calculate the efficiency of the cycle and show that it is equivalent to the result in part (vi). (2 marks) arks). 2.arrow_forwardA hot process stream is cooled by indirect heat exchange with feedwater to a boiler, thereby producing saturated steam. Assume that the heat exchanger is isolated. The liquid feed water to the boiler enters at 50 °C, and leaves as saturated steam at 10000 kPa. The flow of the process stream is 1000 kmol/h, the molar enthalpy at the input is 2000 kJ/kmol, and the output enthalpy is 800 kJ/kmol. Calculate a) the flow rate (kg/h) of steam produced. b) If we had to produce water vapor by burning fuel, find its savings (gallons/h), if the heating power of the fuel is 144,000 Btu/gal. Note: make a table of degrees of freedom. Neglect changes in kinetic and potential energy.Data: Boiler feed water enthalpy Ĥ (kJ/kg) ≈ 4.19 T(°C):arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License