CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.7, Problem 108RP
Liquid propane [C3H8(l)] enters a combustion chamber at 25°C and 1 atm at a rate of 0.4 kg/min where it is mixed and burned with 150 percent excess air that enters the combustion chamber at 25°C. The heat transfer from the combustion chamber is 53 kW. Write the balanced combustion equation and determine (a) the mass flow rate of air, (b) the average molar mass (molecular weight) of the product gases, and (c) the temperature of the products of combustion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of
0.07 kg/min where it is mixed and burned with 40 percent excess air that
enters the combustion chamber at 7°C. An analysis of the combustion
gases reveals that all the hydrogen in the fuel burns to H,0 but only 75
percent of the carbon burns to CO, with the remaining 25 percent forming
CO. determine (a) the balanced equation for actual combustion process
and (b) the mass flow rate of air.
internal combustion engine
Ql:- C4HS is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the
following volume percents: COz 14.95%, C4HS 0.75%, CO 0%, Hz 0%, Oz 0%, with the rest being
Nz. Higher heating value of this fuel is QHHV = 46.9 MJ/kg. Write the balanced chemical equation for one
mole of this fuel at these conditions.
Calculate:
(a) Air-fuel ratio.
(b) Equivalence ratio.
(c) Lower heating value of the fuel. [MJ/kg]
(d) The energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%.
[MJ]
Chapter 15 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 15.7 - What are the approximate chemical compositions of...Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 3PCh. 15.7 - Prob. 4PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - How does the presence of moisture in air affect...Ch. 15.7 - Prob. 7PCh. 15.7 - Prob. 8PCh. 15.7 - Prob. 9PCh. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 16PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 18PCh. 15.7 - Propane (C3H8) is burned with 75 percent excess...Ch. 15.7 - Propane fuel (C3H8) is burned with 30 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 22PCh. 15.7 - Prob. 23PCh. 15.7 - Ethane (C2H6) is burned with 20 percent excess air...Ch. 15.7 - Octane (C8H18) is burned with 250 percent...Ch. 15.7 - Prob. 26PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - Prob. 28PCh. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 30PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 33PCh. 15.7 - The fuel mixer in a natural gas burner mixes...Ch. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Determine the fuelair ratio when coal from...Ch. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - When are the enthalpy of formation and the...Ch. 15.7 - Prob. 43PCh. 15.7 - Prob. 44PCh. 15.7 - Prob. 45PCh. 15.7 - Prob. 46PCh. 15.7 - Prob. 48PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 53PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 56PCh. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - Prob. 60PCh. 15.7 - Prob. 61PCh. 15.7 - Prob. 62PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 66PCh. 15.7 - A gaseous fuel mixture that is 40 percent propane...Ch. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 70PCh. 15.7 - Prob. 71PCh. 15.7 - Prob. 72PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 74PCh. 15.7 - Prob. 75PCh. 15.7 - What is the adiabatic flame temperature of methane...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Ethyl alcohol [C2H5OH(g)] is burned with 200...Ch. 15.7 - Prob. 81PCh. 15.7 - Prob. 82PCh. 15.7 - Reconsider Prob. 1582. The combustion products are...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 85PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 88PCh. 15.7 - Reconsider Prob. 1588. The automobile engine is to...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 91PCh. 15.7 - n-Octane [C8H18(l)] is burned in the...Ch. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - n-Butane (C4H10) is burned with the stoichiometric...Ch. 15.7 - A gaseous fuel mixture of 60 percent propane...Ch. 15.7 - Calculate the higher and lower heating values of...Ch. 15.7 - Prob. 103RPCh. 15.7 - Methane gas (CH4) at 25C is burned steadily with...Ch. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Liquid propane [C3H8(l)] enters a combustion...Ch. 15.7 - Prob. 109RPCh. 15.7 - Prob. 110RPCh. 15.7 - Prob. 111RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 115RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - Prob. 117RPCh. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 126FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- n-Octane gas (C8H18) is burned with 80% excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at 217°C. Calculate the heat transfer, in kJ/kg fuel, during this combustion. C8H18 25°C 80% excess air 25°C Qout Combustion chamber P = 1 atm Products 217°Carrow_forwardUsing Hess' Law, calculate for the heat of combustion of a 1.5 liter propene (C3H6) at 14.5 psi and 80.6°F that is completely burned in air. Assume that all the water produced during the reaction is in liquid state. The standard enthalpy of formation of propene, C3H6 is +20.6 kJ/mol. The heats of formation of CO₂(g) and H₂O(l) are -394 kJ/mol and -285.8 kJ/, respectively.arrow_forwardH.W.3.5 Propylene (C3H6) is burned with 50 percent excess air during a combustion process. Assuming complete combustion and a total pressure of 105 kPa, determine (a) the air-fuel ratio and (b) the temperature at which the water vapor in the products will start condensing (c) the product analysis based on volume and mass.arrow_forward
- C,Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the following volume percents: CO, 14.95%, C,H, 0.75%, CO 0%. H = 0%, O, 0%, with the rest being N. Higher heating value of this fuel is Quav 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these conditions Calculate: (a) Air-fuel ratio. (b) Equivalence ratio. (c) Lower heating value of fuel. [MJ/kg] (d) Energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%. [MJ]arrow_forwardC4Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives the following volume percents: CO2 = 14.95%, C4H8 0.75%, CO = 0%, H2 = 0%, O2 = 0%, with the rest being N2. Higher heating value of this fuel is QHHV = 46.9 MJ/kg. Write the balanced chemical equation for one mole of this fuel at these conditions. Calculate; a) Air-fuel ratio. b) Equivalence ratio. c) Lower heating value of fuel. [MJ/kg] d) Energy released when one kg of this fuel is burned in the engine with a combustion efficiency of 98%. [MJ]arrow_forward1. Determine the theoretical weight of air needed in kgair/kgfuel if the fuel used has 40.3°API. 2. A petrol has the following analysis: 85.5% carbon, 14.4% hydrogen, and 0.10% sulfur. Calculate the volume of air in m³ at 1.0 bar and 15°C required for perfect combustion of 1 kg of the fuel. 3. A typical industrial fuel oil, C16H32, is burned with 20% excess air. Calculate the actual weight of air in kgair/sec needed for 3.2 kg per sec of fuel. 4. A logging firm in Isabela operates a Diesel Electric plant to supply its electric energy requirements. During a 24-hour period, the plant consumed 350 gallons of fuel at 80 deg.F and produces 2700 kW-hrs. Industrial fuel used is 30°API and was purchased at P3.00 per liter at 60 deg.F. Determine the overall efficiency of the plant. 5. A diesel engine consumed 945 liters of fuel per day at 30°C. If the fuel was purchased at 15.5°C and 30°API at Php5.00/liter, determine the cost of fuel to operate the engine per dayarrow_forward
- One Kmol of C8H18 is burned with 100% air containing 25 Kmol of O2. Determine the air-fuel ratio for this combustion process.arrow_forwardComplete Combustion of methane with theoretical air (or 100% air) methane, C H, is to be burned with 100% air for complete combustion. The products of combustion or flue gas is at 105 kPa and 950 C Find (a) write the balanced mol equation (b) mass of theoretical air (c) mass of fuel (d) theoretical air-fuel ratio (e) volumetric analysis and molar analysis of wet flue gas (f) mass and volume of wet flue gas (g) gravimetric analysis of wet flue gas (h) dew point of wet flue gas (i) volumetric analysis and molar analysis of dry flue gas (j) mass and volume of dry flue gas (k) gravimetric analysis of dry flue gasarrow_forwardLiquid octane is burned completely with 75% excess air. Determine the air-fuel ratio for this combustion process.arrow_forward
- Octane gas (C8H18) and atmospheric air are supplied to a combustion chamber at 25°C at the stoichiometric air/fuel ratio. The combustion takes place adiabatically under steady-flow condition. The change in velocity and the work transfer can be assumed negligible. The Enthalpy of Combustion of octane gas at 25°C is – 5,116,180 kJ/kmol (when H2O in the combustion products is in vapor phase). Determine with aid of the Table on Page 26, the final temperature of the combustion products.arrow_forwardFor complete combustion of octane (C3H,3) with 100% dry air. (a) write the balance mol equation (b) calculate the specific heat, enthalpy and internal energy of dry flue gas at 373 K. From Table A-1 specific heats in kJ/kg K: for CO2, Cp = 0.8452 ; for N2, Cp = 1.0414arrow_forwardFuel oil has the following composition (in % by mass): carbon 85%, hydrogen 13%, and sulfur 2%. Calculate: (a) the stoichiometric and actual air-fuel ratios for the combustion with a 10% excess air in kg/kg, and (b) the mole fractions of the products of combustion. Ignore the air humidity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License