CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.7, Problem 8P
To determine
The minimum mass of oxygen required in the reactants and the mass of sulfur dioxide in the products when 1 kg of sulfur is burned.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H.W.3.5 Propylene (C3H6) is burned with 50 percent excess air during a combustion
process. Assuming complete combustion and a total pressure of 105 kPa, determine
(a) the air-fuel ratio and (b) the temperature at which the water vapor in the products
will start condensing (c) the product analysis based on volume and mass.
Methane is burned completely with 25% excess air. Compute the number of moles of nitrogen in the products of combustion per
mole of fuel.
Use the editor to format your answer
C4Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of
the exhaust gives the following volume percents: CO2 = 14.95%, C4H8
0.75%, CO = 0%, H2 = 0%, O2 = 0%, with the rest being N2. Higher heating
value of this fuel is QHHV = 46.9 MJ/kg. Write the balanced chemical
equation for one mole of this fuel at these conditions. Calculate;
a) Air-fuel ratio.
b) Equivalence ratio.
c) Lower heating value of fuel. [MJ/kg]
d) Energy released when one kg of this fuel is burned in the engine with
a combustion efficiency of 98%. [MJ]
Chapter 15 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 15.7 - What are the approximate chemical compositions of...Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 3PCh. 15.7 - Prob. 4PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - How does the presence of moisture in air affect...Ch. 15.7 - Prob. 7PCh. 15.7 - Prob. 8PCh. 15.7 - Prob. 9PCh. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 16PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 18PCh. 15.7 - Propane (C3H8) is burned with 75 percent excess...Ch. 15.7 - Propane fuel (C3H8) is burned with 30 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 22PCh. 15.7 - Prob. 23PCh. 15.7 - Ethane (C2H6) is burned with 20 percent excess air...Ch. 15.7 - Octane (C8H18) is burned with 250 percent...Ch. 15.7 - Prob. 26PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - Prob. 28PCh. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 30PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 33PCh. 15.7 - The fuel mixer in a natural gas burner mixes...Ch. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Determine the fuelair ratio when coal from...Ch. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - When are the enthalpy of formation and the...Ch. 15.7 - Prob. 43PCh. 15.7 - Prob. 44PCh. 15.7 - Prob. 45PCh. 15.7 - Prob. 46PCh. 15.7 - Prob. 48PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 53PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 56PCh. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - Prob. 60PCh. 15.7 - Prob. 61PCh. 15.7 - Prob. 62PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 66PCh. 15.7 - A gaseous fuel mixture that is 40 percent propane...Ch. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 70PCh. 15.7 - Prob. 71PCh. 15.7 - Prob. 72PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 74PCh. 15.7 - Prob. 75PCh. 15.7 - What is the adiabatic flame temperature of methane...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Ethyl alcohol [C2H5OH(g)] is burned with 200...Ch. 15.7 - Prob. 81PCh. 15.7 - Prob. 82PCh. 15.7 - Reconsider Prob. 1582. The combustion products are...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 85PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 88PCh. 15.7 - Reconsider Prob. 1588. The automobile engine is to...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 91PCh. 15.7 - n-Octane [C8H18(l)] is burned in the...Ch. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - n-Butane (C4H10) is burned with the stoichiometric...Ch. 15.7 - A gaseous fuel mixture of 60 percent propane...Ch. 15.7 - Calculate the higher and lower heating values of...Ch. 15.7 - Prob. 103RPCh. 15.7 - Methane gas (CH4) at 25C is burned steadily with...Ch. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Liquid propane [C3H8(l)] enters a combustion...Ch. 15.7 - Prob. 109RPCh. 15.7 - Prob. 110RPCh. 15.7 - Prob. 111RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 115RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - Prob. 117RPCh. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 126FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A sample of coal was found to have the following percentage composition C=75 %, H2 = 5.2 %, O2 = 12.8 %, N2 = 1.2 % and the rest ash. Calculate the amount of air needed for the complete combustion if 1 kg of the coal is burnt with 30 % excess air.arrow_forwardEthane (C2H6) is burned with atmospheric air and the volumetric analysis of the dry products of combustion yields the following: 10% CO2, 1% CO, 3% 02 and 86% N2. Develop the combustion equation and determine (a) the percentage of the excess air (b) the air fuel ratio. (Solve for 100 kmol of dry products).arrow_forwardA certain petrol engine fuel contains 86% C and 14% H2 by mass. If the fuel is burnt with 20% excess air and the combustion is complete, estimate the volumetric composition of the products of combustion including water vapor formed *arrow_forward
- Question No. 11: One kmol of octane C8H18 is burned with air that contains 20kmol of O2. Assuming the product contains only CO2, H20, 02and N2, determine the mol number of each gas in the products and the air-fuel ratio for this combustion process.arrow_forwardLiquid octane is burned completely with 75% excess air. Determine the air-fuel ratio for this combustion process.arrow_forward2 PARTS ( A& B) solve carefully and Explain your reasoning Gaseous ethane C2H6 is burned at constant pressure P = 1atm. The reagents enter the reaction at 25°C, and the products are at 727°C. Determine the heat released by the system for ethane combustion with (a) the theoretical stechiometric amount of oxygen (b) the theoretical amount of air (air contains 3.76 kmol of nitrogen per 1 kmol of oxygen). In which case is the heat released by the system larger? Explain why.arrow_forward
- One Kmol of C8H18 is burned with 100% air containing 25 Kmol of O2. Determine the air-fuel ratio for this combustion process.arrow_forwardLiquid propane (C 3 H 8 ) enters a combustion chamber at 25 °C at a rate of 0.05 kg/min where it is mixed and burned with theoretical air that enters the combustion chamber at 7 °C. an analysis of combustion gases reveals that all the hydrogen in the fuel burns to H 2 O but only but only 90% of carbon burn to CO 2 with the remaining 10% forming Co if the exit temperature of combustion gases is 1500 K (a) the mass flow rate of air and (b) the rate of heat transfer from the combustion chamberarrow_forwardPARTS A & B ( Justify correctly) Gaseous ethane C2H6 is burned at constant pressure P = 1atm. The reagents enter the reaction at 25°C, and the products are at 727°C. Determine the heat released by the system for ethane combustion with PART (a) the theoretical stechiometric amount of oxygen PART (b) the theoretical amount of air (air contains 3.76 kmol of nitrogen per 1 kmol of oxygen). In which case is the heat released by the system larger? Explain .arrow_forward
- One mole of Carbon Dioxide burns completely in the presence of 3 moles of diatomic oxygen in a constant volume enclosure. The original temperature and pressure of the reactants are 25 C and 1 atm. A) If combustion takes place adiabatically calculate final temeprature and pressure of the products. B) If combustion does not take place adiabatically calculate the heat transfer per mole of CO when the products are cooled to a final temperature of 500K.arrow_forwardDodecane is burned at constant pressure with 120% excess air. What is the actual air fuel ratio for this process? (A) 55 (B) 22 44 (D) 33arrow_forwardUsing Hess' Law, calculate for the heat of combustion of a 1.5 liter propene (C3H6) at 14.5 psi and 80.6°F that is completely burned in air. Assume that all the water produced during the reaction is in liquid state. The standard enthalpy of formation of propene, C3H6 is +20.6 kJ/mol. The heats of formation of CO₂(g) and H₂O(l) are -394 kJ/mol and -285.8 kJ/, respectively.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License