OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15.4, Problem 15.9CE
Interpretation Introduction
Interpretation:
The effect of reaction,
Concept Introduction:
The equilibrium state of a
According to Le Chatelier’s Principle, “after any change in the reaction system, the equilibrium shifts in such a way or a direction that it can minimize the effects of change”.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Swimming pool disinfectants produce hypochlorous acid upon dissolution. The weak acid ionizes as follows:
HClO (aq) ⇄ H+ (aq) + ClO‒ (aq) Ka=3.0 x 10 ‒8
As strong oxidizing agents, both acid and its conjugate base kill bacteria. However, too high [HClO] is irritating to swimmers’ eyes and too high [ClO‒] will cause the ions to decompose in sunlight. The recommended pH to circumvent both problems is 7.8. Determine the ratio of the weak acid and its conjugate base at this pH.
The ionization constant, Ka, for dichloroacetic acid, HC2HO2Cl2 , is 5.0 × 10‑2. What is the pH of a 0.15 molar solution of this acid?
At 25 oC, Ammonia is a weak base that reacts with water according to this equation: NH3(aq) + H2O(aq) ⇌ NH4+(aq) + OH−(aq)
Briefly explain how the equilibrium will shift (to get back to equilibrium) if the following perturbations are made to the system:
(a) Addition of HCl
(b) Addition of NaOH
(c) Addition of NH4Cl
Chapter 15 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 15.1 - Predict whether 1.0 L of each solution is a...Ch. 15.1 - Calculate the pH of blood containing 0.0020-M...Ch. 15.1 - Prob. 15.2ECh. 15.1 -
Calculate the ratio of [] to [] in blood at a...Ch. 15.1 - Use the data in Table 15.1 to select a conjugate...Ch. 15.1 -
Calculate the mole ratio of sodium acetate and...Ch. 15.1 - Calculate the pH of these buffers.
Ch. 15.1 - If an abnormally high CO2 concentration is present...Ch. 15.1 - Calculate the minimum mass (g) of KOH that would...Ch. 15.2 - For the titration of 50.0 mL of 0.100-M HCl with...
Ch. 15.2 - Draw the titration curve for the titration of 50.0...Ch. 15.2 - Use the Ka expression and value for acetic acid to...Ch. 15.2 - Explain why the curve for the titration of acetic...Ch. 15.4 - Write the Ksp expression for each of these...Ch. 15.4 - The Ksp of AgBr at 100 C is 5 1010. Calculate the...Ch. 15.4 - A saturated solution of silver oxalate. Ag2C2O4....Ch. 15.4 - Prob. 15.9CECh. 15.5 - Consider 0.0010-M solutions of these sparingly...Ch. 15.5 - Prob. 15.11PSPCh. 15.5 - Calculate the solubility of PbCl2 in (a) pure...Ch. 15.5 - Prob. 15.13PSPCh. 15.6 - (a) Determine whether AgCl precipitates from a...Ch. 15.6 - Prob. 15.15PSPCh. 15 - Prob. 1SPCh. 15 - Choose a weak-acid/weak-base conjugate pair from...Ch. 15 - Prob. 4SPCh. 15 - Define the term buffer capacity.Ch. 15 - What is the difference between the end point and...Ch. 15 - What are the characteristics of a good acid-base...Ch. 15 - A strong acid is titrated with a strong base, such...Ch. 15 - Repeat the description for Question 4, but use a...Ch. 15 - Use Le Chatelier’s principle to explain why PbCl2...Ch. 15 - Describe what a complex ion is and give an...Ch. 15 - Define the term “amphoteric”.
Ch. 15 - Distinguish between the ion product (Q) expression...Ch. 15 - Describe at least two ways that the solubility of...Ch. 15 - Briefly describe how a buffer solution can control...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Many natural processes can be studied in the...Ch. 15 - Which of these combinations is the best to buffer...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Calculate the mass of sodium acetate, NaCH3COO,...Ch. 15 - Calculate the mass in grams of ammonium chloride,...Ch. 15 - A buffer solution can be made from benzoic acid,...Ch. 15 - A buffer solution is prepared from 5.15 g NH4NO3...Ch. 15 - You dissolve 0.425 g NaOH in 2.00 L of a solution...Ch. 15 - A buffer solution is prepared by adding 0.125 mol...Ch. 15 - If added to 1 L of 0.20-M acetic acid, CH3COOH,...Ch. 15 - If added to 1 L of 0.20-M NaOH, which of these...Ch. 15 - Calculate the pH change when 10.0 mL of 0.100-M...Ch. 15 - Prob. 29QRTCh. 15 - Prob. 30QRTCh. 15 - Prob. 31QRTCh. 15 - The titration curves for two acids with the same...Ch. 15 - Explain why it is that the weaker the acid being...Ch. 15 - Prob. 34QRTCh. 15 - Consider all acid-base indicators discussed in...Ch. 15 - Which of the acid-base indicators discussed in...Ch. 15 - It required 22.6 mL of 0.0140-M Ba(OH)2 solution...Ch. 15 - It took 12.4 mL of 0.205-M H2SO4 solution to...Ch. 15 - Vitamin C is a monoprotic acid. To analyze a...Ch. 15 - An acid-base titration was used to find the...Ch. 15 - Calculate the volume of 0.150-M HCl required to...Ch. 15 - Calculate the volume of 0.225-M NaOH required to...Ch. 15 - Prob. 43QRTCh. 15 - Prob. 44QRTCh. 15 - Prob. 45QRTCh. 15 - Explain why rain with a pH of 6.7 is not...Ch. 15 - Identify two oxides that are key producers of acid...Ch. 15 - Prob. 48QRTCh. 15 - Prob. 49QRTCh. 15 - Prob. 50QRTCh. 15 - Prob. 51QRTCh. 15 - A saturated solution of silver arsenate, Ag3AsO4,...Ch. 15 - Prob. 53QRTCh. 15 - Prob. 54QRTCh. 15 - Prob. 55QRTCh. 15 - Prob. 56QRTCh. 15 - Prob. 57QRTCh. 15 - Prob. 58QRTCh. 15 - Prob. 59QRTCh. 15 - Prob. 60QRTCh. 15 - Prob. 61QRTCh. 15 - Prob. 62QRTCh. 15 - Prob. 63QRTCh. 15 - Prob. 64QRTCh. 15 - Predict what effect each would have on this...Ch. 15 - Prob. 66QRTCh. 15 - Prob. 67QRTCh. 15 - The solubility of Mg(OH)2 in water is...Ch. 15 - Prob. 69QRTCh. 15 - Prob. 70QRTCh. 15 - Prob. 71QRTCh. 15 - Prob. 72QRTCh. 15 - Write the chemical equation for the formation of...Ch. 15 - Prob. 74QRTCh. 15 - Prob. 75QRTCh. 15 - Prob. 76QRTCh. 15 - Prob. 77QRTCh. 15 - Prob. 78QRTCh. 15 - Prob. 79QRTCh. 15 - Prob. 80QRTCh. 15 - Prob. 81QRTCh. 15 - Solid sodium fluoride is slowly added to an...Ch. 15 - Prob. 83QRTCh. 15 - Prob. 84QRTCh. 15 - A buffer solution was prepared by adding 4.95 g...Ch. 15 - Prob. 86QRTCh. 15 - Prob. 87QRTCh. 15 - Prob. 88QRTCh. 15 - Prob. 89QRTCh. 15 - Which of these buffers involving a weak acid HA...Ch. 15 - Prob. 91QRTCh. 15 - Prob. 92QRTCh. 15 - When 40.00 mL of a weak monoprotic acid solution...Ch. 15 - Each of the solutions in the table has the same...Ch. 15 - Prob. 95QRTCh. 15 - Prob. 97QRTCh. 15 - The average normal concentration of Ca2+ in urine...Ch. 15 - Explain why even though an aqueous acetic acid...Ch. 15 - Prob. 100QRTCh. 15 - Prob. 101QRTCh. 15 - Prob. 102QRTCh. 15 - Prob. 103QRTCh. 15 - Prob. 104QRTCh. 15 - Apatite, Ca5(PO4)3OH, is the mineral in teeth.
On...Ch. 15 - Calculate the maximum concentration of Mg2+...Ch. 15 - Prob. 107QRTCh. 15 - Prob. 108QRTCh. 15 - The grid has six lettered boxes, each of which...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Prob. 112QRTCh. 15 - Prob. 113QRTCh. 15 - Prob. 114QRTCh. 15 - Prob. 115QRTCh. 15 - You want to prepare a pH 4.50 buffer using sodium...Ch. 15 - Prob. 117QRTCh. 15 - Prob. 118QRTCh. 15 - Prob. 119QRTCh. 15 - Prob. 120QRTCh. 15 - Prob. 121QRTCh. 15 - Prob. 122QRTCh. 15 - You are given four different aqueous solutions and...Ch. 15 - Prob. 124QRTCh. 15 - Prob. 126QRTCh. 15 - Prob. 15.ACPCh. 15 - Prob. 15.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write the chemical equation and the expression for the equilibrium constant, and calculate Kb for the reaction of each of the following ions as a base. (a) sulfate ion (b) citrate ionarrow_forwardComplete each of these reactions by filling in the blanks. Predict whether each reaction is product-favored or reactant-favored, and explain your reasoning. (a) _________ (aq) + Br(aq) NH3(aq) + HBr(aq) (b) CH3COOH(aq) + CN(aq) ________ (aq) + HCN(aq) (c) ________ (aq)+H2O () NH3(aq) + OH(aq)arrow_forwardWrite the equilibrium constant expression, K, for the following reaction taking place in dilute aqueous solution.ClO- (aq) + H2O (l)HClO (aq) + OH- (aq)arrow_forward
- Methanoic acid is also called formic acid. It has the chemical formula HCOOH(l). It is a colourless fuming liquid that is mainly used as a preservative. It exhibits the following equilibrium in water:HCOOH(aq) + H2O(l) → HCOO–(aq) + H3O+(aq) 4) The concentration of the hydroxide ion, OH-(aq), in an aqueous solution is 2.5 x 10–3 mol/L. What is the pH of the solution? PLEASE HELP THIS IS VERY URGENTarrow_forwardWrite the equilibrium constant expression for this reaction: CH;Cl(aq)+OH (aq) → CH;OH(aq)+Cl (aq)arrow_forwardMethanoic acid is also called formic acid. It has the chemical formula HCOOH(l). It is a colourless fuming liquid that is mainly used as a preservative. It exhibits the following equilibrium in water:HCOOH(aq) + H2O(l) → HCOO–(aq) + H3O+(aq) 3) A 35.0 mL sample of (monoprotic) lactic acid, C3H6O3, is titrated with 20.0 mL of a 4.0 x 10-4 mol/L sodium hydroxide solution. What is the pH of the resulting solution at the equivalence point, if Ka for lactic acid is 1.4 x 10-4? PLEASE HELP THIS IS VERY URGENTarrow_forward
- COHSOH(ag) + H2On + CeHsO (aq) + H3O*(a9) Ka= 1.12 x 10-10 (a) Phenol is a weak acid that partially dissociates in water according to the equation above. Write the equilibrium-constant expression for the dissociation of the acid in water. (b) What is the pH of a 0.75 M CaHsOH(ag) solution? (C) For a certain reaction involving CaHsOH(ag) to proceed at a significant rate, the phenol must be primarily in its deprotonated form, C3H5O (eg). In order to ensure that the CsHsOH(aq) is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle each pH for which more than 50 percent of the phenol molecules are in the deprotonated form (CoHsO (aq). Justify your answer. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Justification: (d) CeHsOH(ag) reacts with NaOH(ag). Write a net ionic equation representing this reaction (aka: invasion equation). (e) What is the pH of the resulting solution when 30 mL of 0.40 M CSH5OH(aq) is added to 25 mL of 0.60 M NAOH. Show all work…arrow_forwardWrite the equilibrium constant expression for this reaction: NH(aq) → NH3(aq) +H* (aq) X 믐 5arrow_forwardCalculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely:(a) 0.200 M HCl(b) 0.0143 M NaOH(c) 3.0 M HNO3(d) 0.0031 M Ca(OH)2arrow_forward
- 8. (a) HA(aq) is a weak acid with a dissociation constant, Ka, of 8.8 x 10−12. What is the pH of a 0.022 M solution of A−(aq)? The temperature is 25 ◦C. (b) For the reaction A(g) =A(l), the equilibrium constant is 0.666 at 25.0 ◦C and 0.222 at 75.0 ◦C. Making the approximation that the entropy and enthalpy changes of this reaction do not change with temperature, at what temperature will the equilibrium constant be equal to 0.777?arrow_forwardA chemical system is set up by placing some solid ammonium chloride in an ammonia solution. The equilibrium established can be represented as follows: NH4*(aq) + H2O(e) 2 H30*(aq) + NH3(aq) The pH of the solution is taken, then a small amount of NaOH(aq) is added and the pH is taken again. What can be said about the change in pH for the solution? The pH significantly increases because a strong base has been added to the solution. The pH significantly decreases because a strong base has been added to the solution. There is very little change to the pH of the solution. If anything the pH of the solution decreases slightly. There is very little change to the pH of the solution. If anything the pH of the solution increases slightly.arrow_forwardA weak acid, HA, is a monoprotic acid. A solution that is 0.140 Min HA has a pH of 1.800 at 25°C. HA(aq) + H,0(1) 2 H;0"(aq) + A (aq) What is the acid-ionization constant, K, for this acid? What is the degree of ionization of the acid in this solution? Ka- Degree of ionization =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY