OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 32QRT
The titration curves for two acids with the same base are shown on this graph.
- (a) Which is the curve for the weaker acid? Explain your choice.
- (b) Give the approximate pH at the equivalence point for the titration of each acid.
- (c) Explain why the pH at the equivalence point differs for each acid.
- (d) Explain why the starting pH values of the two acids differ.
- (e) Which indicator or indicators, phenolphthalein, bromthymol blue, or methyl red, could be used for the titration of Acid 1? For the titration of Acid 2? Explain your choices.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The drawing below represents a buffer composed of equal concentrations of a weak
acid, HX, and its conjugate base, X-'. The heights of the columns are proportional to
the concentrations of the components of the buffer. (a) Which of the three drawing
(1), (2), or (3) represents the buffer after the addition of a strong acid? Explain. (b)
Which of the three represents the buffer after the addition of a strong base? Explain.
HX X
HX X-
HX X
HX X
(1)
(2)
(3)
Copyright © 2006 Pearson Prentice Hall, Inc.
Consider the titration of 36.0 mL of 0.117 M ammonia with 0.0752 M HCl. (See the Acid-Base Table.)
(a) How many mL of HCl are required to reach the equivalence point?5.60 mL(b) What is the pH at the equivalence point? 5.30(c) What is the pH of the solution after the addition of 15.7 mL of acid? (d) What is the pH of the solution after the addition of 82.9 mL of acid?
only need part c and d please
Assume you titrate 20.0 mL of 0.11 M NH3 with 0.10 M HCl.
(a) What is the pH of the NH3 solution before the titration begins?
(b) What is the pH of the equivalence point?
(c) What is the pH at the midpoint of the titration?
(d) Which indicator would you suggest to detect the equivalence point?
(e) Calculate the pH of the solution after adding 5.00, 11.0, 15.0, 20.0,
22.0, and 25.0 mL of the acid. Combine this information with that from
(a) through (c) and plot the titration curve.
Chapter 15 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 15.1 - Predict whether 1.0 L of each solution is a...Ch. 15.1 - Calculate the pH of blood containing 0.0020-M...Ch. 15.1 - Prob. 15.2ECh. 15.1 -
Calculate the ratio of [] to [] in blood at a...Ch. 15.1 - Use the data in Table 15.1 to select a conjugate...Ch. 15.1 -
Calculate the mole ratio of sodium acetate and...Ch. 15.1 - Calculate the pH of these buffers.
Ch. 15.1 - If an abnormally high CO2 concentration is present...Ch. 15.1 - Calculate the minimum mass (g) of KOH that would...Ch. 15.2 - For the titration of 50.0 mL of 0.100-M HCl with...
Ch. 15.2 - Draw the titration curve for the titration of 50.0...Ch. 15.2 - Use the Ka expression and value for acetic acid to...Ch. 15.2 - Explain why the curve for the titration of acetic...Ch. 15.4 - Write the Ksp expression for each of these...Ch. 15.4 - The Ksp of AgBr at 100 C is 5 1010. Calculate the...Ch. 15.4 - A saturated solution of silver oxalate. Ag2C2O4....Ch. 15.4 - Prob. 15.9CECh. 15.5 - Consider 0.0010-M solutions of these sparingly...Ch. 15.5 - Prob. 15.11PSPCh. 15.5 - Calculate the solubility of PbCl2 in (a) pure...Ch. 15.5 - Prob. 15.13PSPCh. 15.6 - (a) Determine whether AgCl precipitates from a...Ch. 15.6 - Prob. 15.15PSPCh. 15 - Prob. 1SPCh. 15 - Choose a weak-acid/weak-base conjugate pair from...Ch. 15 - Prob. 4SPCh. 15 - Define the term buffer capacity.Ch. 15 - What is the difference between the end point and...Ch. 15 - What are the characteristics of a good acid-base...Ch. 15 - A strong acid is titrated with a strong base, such...Ch. 15 - Repeat the description for Question 4, but use a...Ch. 15 - Use Le Chatelier’s principle to explain why PbCl2...Ch. 15 - Describe what a complex ion is and give an...Ch. 15 - Define the term “amphoteric”.
Ch. 15 - Distinguish between the ion product (Q) expression...Ch. 15 - Describe at least two ways that the solubility of...Ch. 15 - Briefly describe how a buffer solution can control...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Many natural processes can be studied in the...Ch. 15 - Which of these combinations is the best to buffer...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Calculate the mass of sodium acetate, NaCH3COO,...Ch. 15 - Calculate the mass in grams of ammonium chloride,...Ch. 15 - A buffer solution can be made from benzoic acid,...Ch. 15 - A buffer solution is prepared from 5.15 g NH4NO3...Ch. 15 - You dissolve 0.425 g NaOH in 2.00 L of a solution...Ch. 15 - A buffer solution is prepared by adding 0.125 mol...Ch. 15 - If added to 1 L of 0.20-M acetic acid, CH3COOH,...Ch. 15 - If added to 1 L of 0.20-M NaOH, which of these...Ch. 15 - Calculate the pH change when 10.0 mL of 0.100-M...Ch. 15 - Prob. 29QRTCh. 15 - Prob. 30QRTCh. 15 - Prob. 31QRTCh. 15 - The titration curves for two acids with the same...Ch. 15 - Explain why it is that the weaker the acid being...Ch. 15 - Prob. 34QRTCh. 15 - Consider all acid-base indicators discussed in...Ch. 15 - Which of the acid-base indicators discussed in...Ch. 15 - It required 22.6 mL of 0.0140-M Ba(OH)2 solution...Ch. 15 - It took 12.4 mL of 0.205-M H2SO4 solution to...Ch. 15 - Vitamin C is a monoprotic acid. To analyze a...Ch. 15 - An acid-base titration was used to find the...Ch. 15 - Calculate the volume of 0.150-M HCl required to...Ch. 15 - Calculate the volume of 0.225-M NaOH required to...Ch. 15 - Prob. 43QRTCh. 15 - Prob. 44QRTCh. 15 - Prob. 45QRTCh. 15 - Explain why rain with a pH of 6.7 is not...Ch. 15 - Identify two oxides that are key producers of acid...Ch. 15 - Prob. 48QRTCh. 15 - Prob. 49QRTCh. 15 - Prob. 50QRTCh. 15 - Prob. 51QRTCh. 15 - A saturated solution of silver arsenate, Ag3AsO4,...Ch. 15 - Prob. 53QRTCh. 15 - Prob. 54QRTCh. 15 - Prob. 55QRTCh. 15 - Prob. 56QRTCh. 15 - Prob. 57QRTCh. 15 - Prob. 58QRTCh. 15 - Prob. 59QRTCh. 15 - Prob. 60QRTCh. 15 - Prob. 61QRTCh. 15 - Prob. 62QRTCh. 15 - Prob. 63QRTCh. 15 - Prob. 64QRTCh. 15 - Predict what effect each would have on this...Ch. 15 - Prob. 66QRTCh. 15 - Prob. 67QRTCh. 15 - The solubility of Mg(OH)2 in water is...Ch. 15 - Prob. 69QRTCh. 15 - Prob. 70QRTCh. 15 - Prob. 71QRTCh. 15 - Prob. 72QRTCh. 15 - Write the chemical equation for the formation of...Ch. 15 - Prob. 74QRTCh. 15 - Prob. 75QRTCh. 15 - Prob. 76QRTCh. 15 - Prob. 77QRTCh. 15 - Prob. 78QRTCh. 15 - Prob. 79QRTCh. 15 - Prob. 80QRTCh. 15 - Prob. 81QRTCh. 15 - Solid sodium fluoride is slowly added to an...Ch. 15 - Prob. 83QRTCh. 15 - Prob. 84QRTCh. 15 - A buffer solution was prepared by adding 4.95 g...Ch. 15 - Prob. 86QRTCh. 15 - Prob. 87QRTCh. 15 - Prob. 88QRTCh. 15 - Prob. 89QRTCh. 15 - Which of these buffers involving a weak acid HA...Ch. 15 - Prob. 91QRTCh. 15 - Prob. 92QRTCh. 15 - When 40.00 mL of a weak monoprotic acid solution...Ch. 15 - Each of the solutions in the table has the same...Ch. 15 - Prob. 95QRTCh. 15 - Prob. 97QRTCh. 15 - The average normal concentration of Ca2+ in urine...Ch. 15 - Explain why even though an aqueous acetic acid...Ch. 15 - Prob. 100QRTCh. 15 - Prob. 101QRTCh. 15 - Prob. 102QRTCh. 15 - Prob. 103QRTCh. 15 - Prob. 104QRTCh. 15 - Apatite, Ca5(PO4)3OH, is the mineral in teeth.
On...Ch. 15 - Calculate the maximum concentration of Mg2+...Ch. 15 - Prob. 107QRTCh. 15 - Prob. 108QRTCh. 15 - The grid has six lettered boxes, each of which...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Prob. 112QRTCh. 15 - Prob. 113QRTCh. 15 - Prob. 114QRTCh. 15 - Prob. 115QRTCh. 15 - You want to prepare a pH 4.50 buffer using sodium...Ch. 15 - Prob. 117QRTCh. 15 - Prob. 118QRTCh. 15 - Prob. 119QRTCh. 15 - Prob. 120QRTCh. 15 - Prob. 121QRTCh. 15 - Prob. 122QRTCh. 15 - You are given four different aqueous solutions and...Ch. 15 - Prob. 124QRTCh. 15 - Prob. 126QRTCh. 15 - Prob. 15.ACPCh. 15 - Prob. 15.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the titration of HF (K a=6.7104) with NaOH. What is the pH when a third of the acid has been neutralized?arrow_forwardWhat is the pH of a buffer that is 0.150 M in a weak acid and 0.150 M in the acids conjugate base? The acids ionization constant is 6.8 106.arrow_forwardYou are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forward
- What is meant by the capacity of a buffer? Describe a buffer with low capacity and the same buffer with greater capacity.arrow_forwardEach symbol in the box below represents a mole of a component in one liter of a buffer solution; represents the anion (X-), = the weak acid (HX), = H+, and =OH. Water molecules and the few H+ and OH- ions from the dissociation of HX and X- are not shown. The box contains 10 mol of a weak acid, , in a liter of solution. Show what happens upon (a) the addition of 2 mol of OH- (2 ). (b) the addition of 5 mol of OH- (5 ). (c) the addition of 10 mol of OH- (10 ). (d) the addition of 12 mol of OH- (12 ). Which addition (a)-(d) represents neutralization halfway to the equivalence point?arrow_forwardThe titration of 0.100 M acetic acid with 0.100 M NaOH is described in the text. What is the pH of the solution when 35.0 mL of the base has been added to 100.0 mL of 0.100 M acetic acid?arrow_forward
- Consider the titration of 36.0 mL of 0.123 M ammonia with 0.0766 M HCl. (See the Acid-Base Table attached.) (a) How many mL of HCl are required to reach the equivalence point?57.8 mL(b) What is the pH at the equivalence point? 5.29(c) What is the pH of the solution after the addition of 17.2 mL of acid? (d) What is the pH of the solution after the addition of 84.3 mL of acid? (only need help witn c and d)arrow_forwardIn each of the following questions, assume that there is no volume change when HCl is added to water in part (a) or the phosphate buffer in part (c). (a) Calculate the pH when 0.091 moles of HCl are added to 1.000 liter of water. (b) What is the difference between the pH of pure water (pH 7.00) and the pH of the solution after HCl was added? (c) Calculate the pH when 0.091 moles of HCl are added to 1.000 liters of a buffer containing 0.352M KH2PO4 and 0.321 M K2HPO4. (d) The pH before the HCl was added is equal to 7.168. What is the difference between the pH before adding the HCl and after adding the HCl?arrow_forward(a) Calculate the pH of a buffer solution containing 0.40 mole of KF and 0.50 mol of HF in 1.50 liter solution. (Ka of HF is 7.2*10–4); 15.0 mL of 1.00 M HCl is added to the original buffer in question (a). (b) Show the equation of reaction which take place when HCl is added. (c) What will the pH of the buffer solution in question (a) be after the addition of 15.0 mL of 1.00 M HCl.arrow_forward
- The following figure represents solutions at various stagesof the titration of a weak acid, HA, with NaOH. (The Na+ions and water molecules have been omitted for clarity.) Towhich of the following regions of the titration curve doeseach drawing correspond: (a) before addition of NaOH,(b) after addition of NaOH but before the equivalencepoint, (c) at the equivalence point, (d) after the equivalencepoint?arrow_forwardCalculate pH for a weak acid/strong base titration. Determine the pH during the titration of 64.2 mL of 0.368 M hypochlorous acid 3.5x10-8) by 0.368 M NaOH at the following points. (Ka (a) Before the addition of any NaOH (b) After the addition of 15.0 mL of NaOH (c) At the half-equivalence point (the titration midpoint) (d) At the equivalence point (e) After the addition of 96.3 mL of NaOHarrow_forward50.00ml of 1.000M sodium benzoate is titrated with 2.000M HCl. (a) What is the pH at the equivalence point? (b) What is the pH of the solution at the initial point? (c) What is the pH after the addition of 30.00ml of the acid? (d) What is the pH of the solution halfway to the equivalence point? (e) What is the pH after the addition of 5.00ml of the acid? (f)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY