OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 18QRT
Select from Table 15.1 a conjugate acid-base pair that is suitable for preparing a buffer solution whose concentration of hydronium ions is
- (a) 4.5 × 10−3 M.
- (b) 5.2 × 10−8 M.
- (c) 8.3 × 10−6M.
- (d) 9.7 × 10−11 M.
Explain your choices.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are asked to prepare a pH = 3.00 buffer solution startingfrom 1.25 L of a 1.00 M solution of hydrofluoric acid(HF) and any amount you need of sodium fluoride (NaF).(a) What is the pH of the hydrofluoric acid solution priorto adding sodium fluoride? (b) How many grams of sodiumfluoride should be added to prepare the buffer solution?Neglect the small volume change that occurs when the sodiumfluoride is added.
Given that Ka’s for hydrofluoric acid (HF) and boric acid (H3BO3) are 6.3 × 10^–4and 5.4 × 10^–10, respectively, calculate the pH of the following solutions:
(a)The mixture from adding 50 mL 0.2 M HF to 50 mL 0.5 M sodium borate (NaH2BO3).
(b)The mixture from adding an additional 150 mL 0.2 M HF to the solution in (a), i.e., a total of 200 mL 0.2 M HF was added to 50 mL 0.5 M NaH2BO3.
Nitesh
Chapter 15 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 15.1 - Predict whether 1.0 L of each solution is a...Ch. 15.1 - Calculate the pH of blood containing 0.0020-M...Ch. 15.1 - Prob. 15.2ECh. 15.1 -
Calculate the ratio of [] to [] in blood at a...Ch. 15.1 - Use the data in Table 15.1 to select a conjugate...Ch. 15.1 -
Calculate the mole ratio of sodium acetate and...Ch. 15.1 - Calculate the pH of these buffers.
Ch. 15.1 - If an abnormally high CO2 concentration is present...Ch. 15.1 - Calculate the minimum mass (g) of KOH that would...Ch. 15.2 - For the titration of 50.0 mL of 0.100-M HCl with...
Ch. 15.2 - Draw the titration curve for the titration of 50.0...Ch. 15.2 - Use the Ka expression and value for acetic acid to...Ch. 15.2 - Explain why the curve for the titration of acetic...Ch. 15.4 - Write the Ksp expression for each of these...Ch. 15.4 - The Ksp of AgBr at 100 C is 5 1010. Calculate the...Ch. 15.4 - A saturated solution of silver oxalate. Ag2C2O4....Ch. 15.4 - Prob. 15.9CECh. 15.5 - Consider 0.0010-M solutions of these sparingly...Ch. 15.5 - Prob. 15.11PSPCh. 15.5 - Calculate the solubility of PbCl2 in (a) pure...Ch. 15.5 - Prob. 15.13PSPCh. 15.6 - (a) Determine whether AgCl precipitates from a...Ch. 15.6 - Prob. 15.15PSPCh. 15 - Prob. 1SPCh. 15 - Choose a weak-acid/weak-base conjugate pair from...Ch. 15 - Prob. 4SPCh. 15 - Define the term buffer capacity.Ch. 15 - What is the difference between the end point and...Ch. 15 - What are the characteristics of a good acid-base...Ch. 15 - A strong acid is titrated with a strong base, such...Ch. 15 - Repeat the description for Question 4, but use a...Ch. 15 - Use Le Chatelier’s principle to explain why PbCl2...Ch. 15 - Describe what a complex ion is and give an...Ch. 15 - Define the term “amphoteric”.
Ch. 15 - Distinguish between the ion product (Q) expression...Ch. 15 - Describe at least two ways that the solubility of...Ch. 15 - Briefly describe how a buffer solution can control...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Many natural processes can be studied in the...Ch. 15 - Which of these combinations is the best to buffer...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Calculate the mass of sodium acetate, NaCH3COO,...Ch. 15 - Calculate the mass in grams of ammonium chloride,...Ch. 15 - A buffer solution can be made from benzoic acid,...Ch. 15 - A buffer solution is prepared from 5.15 g NH4NO3...Ch. 15 - You dissolve 0.425 g NaOH in 2.00 L of a solution...Ch. 15 - A buffer solution is prepared by adding 0.125 mol...Ch. 15 - If added to 1 L of 0.20-M acetic acid, CH3COOH,...Ch. 15 - If added to 1 L of 0.20-M NaOH, which of these...Ch. 15 - Calculate the pH change when 10.0 mL of 0.100-M...Ch. 15 - Prob. 29QRTCh. 15 - Prob. 30QRTCh. 15 - Prob. 31QRTCh. 15 - The titration curves for two acids with the same...Ch. 15 - Explain why it is that the weaker the acid being...Ch. 15 - Prob. 34QRTCh. 15 - Consider all acid-base indicators discussed in...Ch. 15 - Which of the acid-base indicators discussed in...Ch. 15 - It required 22.6 mL of 0.0140-M Ba(OH)2 solution...Ch. 15 - It took 12.4 mL of 0.205-M H2SO4 solution to...Ch. 15 - Vitamin C is a monoprotic acid. To analyze a...Ch. 15 - An acid-base titration was used to find the...Ch. 15 - Calculate the volume of 0.150-M HCl required to...Ch. 15 - Calculate the volume of 0.225-M NaOH required to...Ch. 15 - Prob. 43QRTCh. 15 - Prob. 44QRTCh. 15 - Prob. 45QRTCh. 15 - Explain why rain with a pH of 6.7 is not...Ch. 15 - Identify two oxides that are key producers of acid...Ch. 15 - Prob. 48QRTCh. 15 - Prob. 49QRTCh. 15 - Prob. 50QRTCh. 15 - Prob. 51QRTCh. 15 - A saturated solution of silver arsenate, Ag3AsO4,...Ch. 15 - Prob. 53QRTCh. 15 - Prob. 54QRTCh. 15 - Prob. 55QRTCh. 15 - Prob. 56QRTCh. 15 - Prob. 57QRTCh. 15 - Prob. 58QRTCh. 15 - Prob. 59QRTCh. 15 - Prob. 60QRTCh. 15 - Prob. 61QRTCh. 15 - Prob. 62QRTCh. 15 - Prob. 63QRTCh. 15 - Prob. 64QRTCh. 15 - Predict what effect each would have on this...Ch. 15 - Prob. 66QRTCh. 15 - Prob. 67QRTCh. 15 - The solubility of Mg(OH)2 in water is...Ch. 15 - Prob. 69QRTCh. 15 - Prob. 70QRTCh. 15 - Prob. 71QRTCh. 15 - Prob. 72QRTCh. 15 - Write the chemical equation for the formation of...Ch. 15 - Prob. 74QRTCh. 15 - Prob. 75QRTCh. 15 - Prob. 76QRTCh. 15 - Prob. 77QRTCh. 15 - Prob. 78QRTCh. 15 - Prob. 79QRTCh. 15 - Prob. 80QRTCh. 15 - Prob. 81QRTCh. 15 - Solid sodium fluoride is slowly added to an...Ch. 15 - Prob. 83QRTCh. 15 - Prob. 84QRTCh. 15 - A buffer solution was prepared by adding 4.95 g...Ch. 15 - Prob. 86QRTCh. 15 - Prob. 87QRTCh. 15 - Prob. 88QRTCh. 15 - Prob. 89QRTCh. 15 - Which of these buffers involving a weak acid HA...Ch. 15 - Prob. 91QRTCh. 15 - Prob. 92QRTCh. 15 - When 40.00 mL of a weak monoprotic acid solution...Ch. 15 - Each of the solutions in the table has the same...Ch. 15 - Prob. 95QRTCh. 15 - Prob. 97QRTCh. 15 - The average normal concentration of Ca2+ in urine...Ch. 15 - Explain why even though an aqueous acetic acid...Ch. 15 - Prob. 100QRTCh. 15 - Prob. 101QRTCh. 15 - Prob. 102QRTCh. 15 - Prob. 103QRTCh. 15 - Prob. 104QRTCh. 15 - Apatite, Ca5(PO4)3OH, is the mineral in teeth.
On...Ch. 15 - Calculate the maximum concentration of Mg2+...Ch. 15 - Prob. 107QRTCh. 15 - Prob. 108QRTCh. 15 - The grid has six lettered boxes, each of which...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Prob. 112QRTCh. 15 - Prob. 113QRTCh. 15 - Prob. 114QRTCh. 15 - Prob. 115QRTCh. 15 - You want to prepare a pH 4.50 buffer using sodium...Ch. 15 - Prob. 117QRTCh. 15 - Prob. 118QRTCh. 15 - Prob. 119QRTCh. 15 - Prob. 120QRTCh. 15 - Prob. 121QRTCh. 15 - Prob. 122QRTCh. 15 - You are given four different aqueous solutions and...Ch. 15 - Prob. 124QRTCh. 15 - Prob. 126QRTCh. 15 - Prob. 15.ACPCh. 15 - Prob. 15.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Using the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardGiven that Ka’s for hydrofluoric acid (HF) and boric acid (H3BO3) are 6.3 × 10^–4 and 5.4 × 10^–10, respectively, calculate the pH of the following solutions: (a) The mixture from adding 50 mL 0.2 M HF to 50 mL 0.5 M sodium borate (NaH2BO3). (b) The mixture from adding an additional 150 mL 0.2 M HF to the solution in (a), i.e., a total of 200 mL 0.2 M HF was added to 50 mL 0.5 M NaH2BO3.arrow_forwardA buffer is prepared by adding 4.8 g of (NH4)2SO4 to 425 mL of 0.258 M NH3. Assuming that the volume stays constant, what is pH of the buffer solution? Consider: Kb (NH3) = 1.8×10–5, and Molar Mass of (NH4)2SO4 = 132.14 g/mol. (A) 10.04 (B) 5.22 (C) 9.44 (D) 4.93 (E) 1.75arrow_forward
- A buffer solution is prepared from equal volumes of 0.200 M acetic acid and 0.600 M sodium acetate. Use 1.80 × 10−5 as Ka for acetic acid.(a) What is the pH of the solution?(b) Is the solution acidic or basic?(c) What is the pH of a solution that results when 3.00 mL of 0.034 M HCl is added to 0.200 L of the original buffer?arrow_forwardYou have 1.5 liter of solution that is composed of 8.88 grams of NH3 and 11.33 grams of ammonium chloride mixed well. Kb for ammonia =1.8 x 10^-5 (A) is this a buffer solution? Why or why not? (B)if it is a buffer solution, what is the pH of this buffer solution? (C)how many mL of 1.50 M HCl can be added to this solution before the buffer is exhausted (d) how many mL of 1.5 M NaOH can be added to this solution before the buffer is exhausted?arrow_forwardAn important component of blood is the buffer combination of bicarbonate ion and carbonic acid. Consider blood with a pH of 7.42. (a) What is the ratio of [H2CO3] to [HCO3− ]?(b) What does the pH become if 14% of the bicarbonate ions are converted to carbonic acid? (c) What does the pH become if 26% of the carbonic acid molecules are converted to bicarbonate ions?arrow_forward
- 4) A highly toxic hydrogen cyanide (HCN) is a weak acid. A chemical engineer plans to determine pH of a 50 mL sample of HCN (0.10 M) in a titration process. To this end, she used 0.20 M NaOH as a titrant in varying volumes. Calculate the pH of the solution at the following points: (Ka for HCN=6.2×10-¹0) (a) Before addition of NaOH (initial pH), (b) After 10.00 mL of titrant addition, (c) After 25.00 mL of titrant addition, (d) After 50.00 mL of titrant addition.arrow_forward(7) Calculate the pH of each of the following solutions: (a) 0.1000M Propanoic acid( HC H O,,K=1.3x105) (b) 0.1000M sodium propanoate (Na C HỎ) (c) 0.1000M HC₂H₂O, and 0.1000M Nа С¸¸0₂ 3 5 52 (d) After 0.020 mol of HCl is added to 1.00 L solution of (a) and (b) above. (e) After 0.020 mol of NaOH is added to 1.00 L solution of (a) and (b) above.arrow_forwardA 500.-mL solution consists of 0.050 mol of solid NaOH and 0.13 mol of hypochlorous acid (HClO; Kₐ=3.0X10⁻⁸) dis-solved in water.(a) Aside from water, what is the concentration of each species that is present?(b) What is the pH of the solution?(c) What is the pH after adding 0.0050 mol of HCl to the flask?arrow_forward
- A 0.1724-g sample of an unknown monoprotic acid was dissolved in 26.9 mL of water and titrated with 0.0623 M NaOH solution. The volume of base required to bring the solution to the equivalence point was 19.8 mL. (a) Calculate the molar mass of the acid. (b) After 11.5 mL of base had been added during the titration, the pH was determined to be 5.66. What is the Ka of the unknown acid?arrow_forwardA solution contains 0.454 M (CH3)2NH₂Br and 0.267 M dimethylamine, (CH3)2NH. The pH of this solution isarrow_forward13. A 60.00 mL sample of 0.075 M sodium benzoate (NaC7H5O2) was titrated with 0.050 M HCl. What is the pH of the solutionafter 10.00 ml of HCl is added?(a) 4.19(b) 5.09(c) 5.74(d) 6.2414. What is the ratio of moles of benzoate (C7H5O2‒) to benzoic acid (HC7H5O2) in the solution that results from thecombination of the NaC7H5O2 and HCl in the problem above?(a) 8(b) 0.125(c) 0.0040(d) 0.00050arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY