Concept explainers
(a)
Interpretation:
The change that occurs in the saturated
Concept Introduction:
A reaction is said to be in equilibrium if the rate at which the forward reaction takes place becomes equal to the rate at which the backward reaction takes place. If any of the factors that affect the equilibrium changes, then the reaction shifts in either forward or backward direction so that the equilibrium condition is re-established. According to the Le Chatelier’s principle, the change in concentration, volume, pressure and temperature affects the equilibrium of the reaction.
(b)
Interpretation:
The change that occurs in the saturated
Concept Introduction:
Refer to concept of part (a).
(c)
Interpretation:
The change that occurs in the saturated
Concept Introduction:
Refer to concept of part (a).
(d)
Interpretation:
The change that occurs in the saturated
Concept Introduction:
Refer to concept of part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- A buffer is prepared by adding 5.0 g of ammonia, NH3, and 20.0 g of ammonium chloride, NH4Cl, to enough water to form 2.50 L of solution. (a) What is the pH of the buffer? (b) Write the complete ionic equation for the reaction that occurs when a few drops of nitric acid are added to the buffer. (c) Write the complete ionic equation for the reaction that occurs when a few drops of potassium hydroxide solution are added to the buffer.arrow_forwardGiven that Ka’s for hydrofluoric acid (HF) and boric acid (H3BO3) are 6.3 × 10^–4and 5.4 × 10^–10, respectively, calculate the pH of the following solutions: (a)The mixture from adding 50 mL 0.2 M HF to 50 mL 0.5 M sodium borate (NaH2BO3). (b)The mixture from adding an additional 150 mL 0.2 M HF to the solution in (a), i.e., a total of 200 mL 0.2 M HF was added to 50 mL 0.5 M NaH2BO3.arrow_forward4) A highly toxic hydrogen cyanide (HCN) is a weak acid. A chemical engineer plans to determine pH of a 50 mL sample of HCN (0.10 M) in a titration process. To this end, she used 0.20 M NaOH as a titrant in varying volumes. Calculate the pH of the solution at the following points: (Ka for HCN=6.2×10-¹0) (a) Before addition of NaOH (initial pH), (b) After 10.00 mL of titrant addition, (c) After 25.00 mL of titrant addition, (d) After 50.00 mL of titrant addition.arrow_forward
- You are asked to prepare a pH = 3.00 buffer solution startingfrom 1.25 L of a 1.00 M solution of hydrofluoric acid(HF) and any amount you need of sodium fluoride (NaF).(a) What is the pH of the hydrofluoric acid solution priorto adding sodium fluoride? (b) How many grams of sodiumfluoride should be added to prepare the buffer solution?Neglect the small volume change that occurs when the sodiumfluoride is added.arrow_forward33. Consider a buffer solution that contains 0.45 M HCOOH and 0.55 M NaHCOO. Note that the Ka for formic acid (HCOOH) is 1.8 x 104. (a) Calculate the pH of this buffer solution. pH = (b) Write the net ionic chemical equation that occurs when potassium hydroxide (KOH) (MW of KOH = 56.1 g/mol) is added to the buffer. (c) If 0.260 g of solid KOH is added to 250. mL of this buffer solution, what is the resulting pH of the solution? New pH =arrow_forwardA buffer is prepared by adding 20.0 g of sodium acetate(CH3COONa) to 500 mL of a 0.150 M acetic acid(CH3COOH) solution. (a) Determine the pH of the buffer.(b) Write the complete ionic equation for the reaction thatoccurs when a few drops of hydrochloric acid are added tothe buffer. (c) Write the complete ionic equation for the reactionthat occurs when a few drops of sodium hydroxidesolution are added to the buffer.arrow_forward
- (a) Calculate the pH in a solution prepared by dissolving 0.050 mol of acetic acid and 0.020 mol of sodium acetate in water and adjusting the volume to 500 mL.(b) Suppose 0.010 mol of NaOH is added to the buffer from part (a).Calculate the pH of the solution that results.arrow_forwardA buffer solution is prepared by dissolving 4.7 g of nitrous acid, HNO2 , and 13.8 g of sodium nitrite, NaNO2, in 1.0 liter of solution. (a) Calculate the pH of the buffer. (b) Calculate the pH of the solution which results when the following are added to separate 100 mL portions of the buffer: (i) 5.0 mmol of HCI; (ii) 5.0 mmol of NaOH. Ka = 4.5 x 104 %3Darrow_forward(7) Calculate the pH of each of the following solutions: (a) 0.1000M Propanoic acid( HC H O,,K=1.3x105) (b) 0.1000M sodium propanoate (Na C HỎ) (c) 0.1000M HC₂H₂O, and 0.1000M Nа С¸¸0₂ 3 5 52 (d) After 0.020 mol of HCl is added to 1.00 L solution of (a) and (b) above. (e) After 0.020 mol of NaOH is added to 1.00 L solution of (a) and (b) above.arrow_forward
- You are asked to prepare a pH = 3.00 buffer starting from 2.00 L of 0.025 M solution of benzoic acid (C6H5COOH). (a) What is the pH of the benzoic acid solution prior to adding sodium benzoate? (hint: write the reaction equation for the acid dissociation and then use the equilibrium constant expression to calculate [H + ]) (b) How many grams of sodium benzoate should be added to prepare the buffer? Neglect the small volume change that occurs when the sodium benzoate is added.(hint: use the equilibrium constant expression to calculate [C6H5COO− ] in the buffer)arrow_forward4. How does the pH of each of the following solutions change when 5.0 mL of 1.0 M NaOH (a strong base) is added? Fill in the table. Give your answers with 2 decimals. Initial pH Final pH after adding NaOH Solution (a) 100.0 ml water (b) (c) 100.0 mL 0.150 M HNO2 (a weak acid) (Given: Ka = 4.5 × 10-4) 100.0 mL solution of 0.150 M HNO2 and 0.100 M NaNO₂arrow_forward2. A buffer solution is prepared by dissolving 4.7 g of nitrous acid, HNO2 , and 13.8 g of sodium nitrite, NaNO2, in 1.0 liter of solution. (a) Calculate the pH of the buffer. (b) Calculate the pH of the solution which results when the following are added to separate 100 mL portions of the buffer: (i) 5.0 mmol of HCl; (ii) 5.0 mmol of NAOH . Ka = 4.5 x 10*arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY