Concept explainers
(a)
Interpretation:
The
Concept Introduction:
Solubility product relates the solubility of a salt with the concentration of ions present in the salt. Solubility product holds a direct relation with the solubility of the salt. The solubility product is the ability of the solid to dissolve in aqueous solution. The more the solubility product the more the solid dissolves in solution. It is denoted as
(b)
Interpretation:
The concentration of
Concept Introduction:
Refer to concept of part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Consider the reaction BaF2(s)+SO42(aq)BaSO4(s)+2 F(aq) (a) Calculate K for the reaction. (b) Will BaSO4 precipitate if Na2SO4 is added to a saturated solution of BaF2?arrow_forwardSome barium chloride is added to a solution that contains both K2SO4 (0.050 M) and Na3PO4 (0.020 M). (a) Which begins to precipitate first: the barium sulfate or the barium phosphate? (b) The concentration of the first anion species to precipitate, either the sulfate or phosphate, decreases as the precipitate forms. What is the concentration of the first species when the second begins to precipitate?arrow_forwardIf the concentration of Zn2+ in 10.0 mL of water is 1.63 104 M, will zinc hydroxide, Zn(OH)2, precipitate when 4.0 mg of NaOH is added?arrow_forward
- Because barium sulfate is opaque to X-rays, it is suspended in water and taken internally to make the gastrointestinal tract visible in an X-ray photograph. Although barium ion is quite toxic, barium sulfate’s /Csp of 1.1 X 10-,<) gives it such low solubility' that it can be safely consumed. What is the molar solubility' of BaSO4. What is its solubility' in grams per 100 g of water?arrow_forwardThe Handbook of Chemistry and Physics (http://openstaxcollege.org/l/16Handbook) gives solubilities of the following compounds in grams per 100 mL of water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each. (a) BaSiF6, 0.026 g/100 mL (contains SiF62- ions) (b) Ce(IO3)4, 1.5102 g/100 mL (c) Gd2(SO4)3, 3.98 g/100 mL (d) (NH4)2PtBr6, 0.59 g/100 mL (contains PtBr62- ions)arrow_forwardA solution contains Ca2+ and Pb2+ ions, both at a concentration of 0.010 M. You wish to separate the two ions from each other as completely as possible by precipitating one but not the other using aqueous Na2SO4 as the precipitating agent. (a) Which will precipitate first as sodium sulfate is added, CaSO4 or PbSO4? (b) What will be the concentration of the first ion that precipitates (Ca2+ or Pb2+) when the second, more soluble salt begins to precipitate?arrow_forward
- The solubility of iron(II) hydroxide, Fe(OH)2, is 1.43×10–3 gram per liter at 25 °C. Write a balanced equation for the solubility equilibrium. Write the expression for the solubility product constant, Ksp, and calculate its value. Calculate the pH of a saturated solution of Fe(OH)2 at 25 °C.arrow_forwardDetermine the molar solubility of MgF2 from its solubility product: Ksp = 6.4 × 10–9.arrow_forwardCalculate the Molar Solubility at 25.0 oC of an aqueous solution of calcium phosphate, Ca3(PO4)2, given that its Ksp = 1.20 x 10–26 at 25.0 oC.arrow_forward
- The solubility product of aluminum hydroxide (Al(OH)3) is 1.9x10–33. Derive an equation for the concentration of Al3+ in water as a function of pH if the water is saturated with Al(OH)3. If the concentration of Al3+ in water cannot exceed 10 micromolar (because all the aluminum has dissolved), at what pH would you expect the product of the Al3+ concentration and the PO43− concentration to be a maximum? Explain your reasoning.arrow_forwardof the five salts listed below, which has the highest concentration of its cation in water? assume that all salt solutions are saturated and that the ions do not undergo any additional reactions in water. (a) lead(ii) chromate, ksp = 2.8 × 10–13 (b) cobalt(ii) hydroxide, ksp = 1.3 × 10–15 (c) cobalt(ii) sulfide, ksp = 5 × 10–22 (d) chromium(iii) hydroxide, ksp = 1.6 × 10–30 (e) silver sulfide, ksp = 6 × 10–51arrow_forwardDetermine the molar solubility for Mg(OH)₂ (Ksp = 1.0 × 10⁻³¹) in an aqueous solution that has a pH of 8.90 at 25 °C.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co