Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 77QRT
(a)
Interpretation Introduction
Interpretation:
The chemical equation to illustrate amphoteric behavior of
Concept Introduction:
The amphoteric compounds are those compounds that can act as both acid and base. These compounds react with both acid and bases. Many metal oxides and hydroxides are amphoteric in nature. Amphoteric behavior depends on the oxidation state of metal.
(b)
Interpretation Introduction
Interpretation:
The chemical equation to illustrate amphoteric behavior of
Concept Introduction:
Refer to part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When 1.0 x 10 5 mole of HOCI (K, = 3.5 x 10 8) is dissolved in pure water and diluted to 1.00 L,
which assumption can't be applied in the calculation of the pH of this solution?
(a) that the initial concentration of HOCI is much larger than the total H30* ion concentration
(b) that the H3O* ion concentration from the dissociation of water can be ignored.
(c) that the total H3o* ion concentration is the sum of the concentrations from the dissociation of
HOCI and water
(d) all of these assumptions are valid
(e) none of these assumptions are valid
O a
6. (a) Write an equation where calcium acetate is adding to water. (b) Looking at the equation in (a), is
this salt acidic, basic or neutral? (c) Determine the pH of a solution of calcium acetate, Ca(CH₂COO), that
is 0.275 M. (Ka for CH₂COOH is 1.8 x 105).
7) What is the pH of a solution (aq., 25 oC) of a 25.0 mL sample of 0.300 M Ba(OH)2 that has 50.0 mL of 0.300 M HNO3 added to it?
Chapter 15 Solutions
Chemistry: The Molecular Science
Ch. 15.1 - Predict whether 1.0 L of each solution is a...Ch. 15.1 - Calculate the pH of blood containing 0.0020-M...Ch. 15.1 - Prob. 15.2ECh. 15.1 -
Calculate the ratio of [] to [] in blood at a...Ch. 15.1 - Use the data in Table 15.1 to select a conjugate...Ch. 15.1 -
Calculate the mole ratio of sodium acetate and...Ch. 15.1 - Calculate the pH of these buffers.
Ch. 15.1 - If an abnormally high CO2 concentration is present...Ch. 15.1 - Calculate the minimum mass (g) of KOH that would...Ch. 15.2 - For the titration of 50.0 mL of 0.100-M HCl with...
Ch. 15.2 - Draw the titration curve for the titration of 50.0...Ch. 15.2 - Use the Ka expression and value for acetic acid to...Ch. 15.2 - Explain why the curve for the titration of acetic...Ch. 15.4 - Write the Ksp expression for each of these...Ch. 15.4 - The Ksp of AgBr at 100 C is 5 1010. Calculate the...Ch. 15.4 - A saturated solution of silver oxalate. Ag2C2O4....Ch. 15.4 - Prob. 15.9CECh. 15.5 - Consider 0.0010-M solutions of these sparingly...Ch. 15.5 - Prob. 15.11PSPCh. 15.5 - Calculate the solubility of PbCl2 in (a) pure...Ch. 15.5 - Prob. 15.13PSPCh. 15.6 - (a) Determine whether AgCl precipitates from a...Ch. 15.6 - Prob. 15.15PSPCh. 15 - Prob. 1SPCh. 15 - Choose a weak-acid/weak-base conjugate pair from...Ch. 15 - Prob. 4SPCh. 15 - Define the term buffer capacity.Ch. 15 - What is the difference between the end point and...Ch. 15 - What are the characteristics of a good acid-base...Ch. 15 - A strong acid is titrated with a strong base, such...Ch. 15 - Repeat the description for Question 4, but use a...Ch. 15 - Use Le Chatelier’s principle to explain why PbCl2...Ch. 15 - Describe what a complex ion is and give an...Ch. 15 - Define the term “amphoteric”.
Ch. 15 - Distinguish between the ion product (Q) expression...Ch. 15 - Describe at least two ways that the solubility of...Ch. 15 - Briefly describe how a buffer solution can control...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Many natural processes can be studied in the...Ch. 15 - Which of these combinations is the best to buffer...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Calculate the mass of sodium acetate, NaCH3COO,...Ch. 15 - Calculate the mass in grams of ammonium chloride,...Ch. 15 - A buffer solution can be made from benzoic acid,...Ch. 15 - A buffer solution is prepared from 5.15 g NH4NO3...Ch. 15 - You dissolve 0.425 g NaOH in 2.00 L of a solution...Ch. 15 - A buffer solution is prepared by adding 0.125 mol...Ch. 15 - If added to 1 L of 0.20-M acetic acid, CH3COOH,...Ch. 15 - If added to 1 L of 0.20-M NaOH, which of these...Ch. 15 - Calculate the pH change when 10.0 mL of 0.100-M...Ch. 15 - Prob. 29QRTCh. 15 - Prob. 30QRTCh. 15 - Prob. 31QRTCh. 15 - The titration curves for two acids with the same...Ch. 15 - Explain why it is that the weaker the acid being...Ch. 15 - Prob. 34QRTCh. 15 - Consider all acid-base indicators discussed in...Ch. 15 - Which of the acid-base indicators discussed in...Ch. 15 - It required 22.6 mL of 0.0140-M Ba(OH)2 solution...Ch. 15 - It took 12.4 mL of 0.205-M H2SO4 solution to...Ch. 15 - Vitamin C is a monoprotic acid. To analyze a...Ch. 15 - An acid-base titration was used to find the...Ch. 15 - Calculate the volume of 0.150-M HCl required to...Ch. 15 - Calculate the volume of 0.225-M NaOH required to...Ch. 15 - Prob. 43QRTCh. 15 - Prob. 44QRTCh. 15 - Prob. 45QRTCh. 15 - Explain why rain with a pH of 6.7 is not...Ch. 15 - Identify two oxides that are key producers of acid...Ch. 15 - Prob. 48QRTCh. 15 - Prob. 49QRTCh. 15 - Prob. 50QRTCh. 15 - Prob. 51QRTCh. 15 - A saturated solution of silver arsenate, Ag3AsO4,...Ch. 15 - Prob. 53QRTCh. 15 - Prob. 54QRTCh. 15 - Prob. 55QRTCh. 15 - Prob. 56QRTCh. 15 - Prob. 57QRTCh. 15 - Prob. 58QRTCh. 15 - Prob. 59QRTCh. 15 - Prob. 60QRTCh. 15 - Prob. 61QRTCh. 15 - Prob. 62QRTCh. 15 - Prob. 63QRTCh. 15 - Prob. 64QRTCh. 15 - Predict what effect each would have on this...Ch. 15 - Prob. 66QRTCh. 15 - Prob. 67QRTCh. 15 - The solubility of Mg(OH)2 in water is...Ch. 15 - Prob. 69QRTCh. 15 - Prob. 70QRTCh. 15 - Prob. 71QRTCh. 15 - Prob. 72QRTCh. 15 - Write the chemical equation for the formation of...Ch. 15 - Prob. 74QRTCh. 15 - Prob. 75QRTCh. 15 - Prob. 76QRTCh. 15 - Prob. 77QRTCh. 15 - Prob. 78QRTCh. 15 - Prob. 79QRTCh. 15 - Prob. 80QRTCh. 15 - Prob. 81QRTCh. 15 - Solid sodium fluoride is slowly added to an...Ch. 15 - Prob. 83QRTCh. 15 - Prob. 84QRTCh. 15 - A buffer solution was prepared by adding 4.95 g...Ch. 15 - Prob. 86QRTCh. 15 - Prob. 87QRTCh. 15 - Prob. 88QRTCh. 15 - Prob. 89QRTCh. 15 - Which of these buffers involving a weak acid HA...Ch. 15 - Prob. 91QRTCh. 15 - Prob. 92QRTCh. 15 - When 40.00 mL of a weak monoprotic acid solution...Ch. 15 - Each of the solutions in the table has the same...Ch. 15 - Prob. 95QRTCh. 15 - Prob. 97QRTCh. 15 - The average normal concentration of Ca2+ in urine...Ch. 15 - Explain why even though an aqueous acetic acid...Ch. 15 - Prob. 100QRTCh. 15 - Prob. 101QRTCh. 15 - Prob. 102QRTCh. 15 - Prob. 103QRTCh. 15 - Prob. 104QRTCh. 15 - Apatite, Ca5(PO4)3OH, is the mineral in teeth.
On...Ch. 15 - Calculate the maximum concentration of Mg2+...Ch. 15 - Prob. 107QRTCh. 15 - Prob. 108QRTCh. 15 - The grid has six lettered boxes, each of which...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Prob. 112QRTCh. 15 - Prob. 113QRTCh. 15 - Prob. 114QRTCh. 15 - Prob. 115QRTCh. 15 - You want to prepare a pH 4.50 buffer using sodium...Ch. 15 - Prob. 117QRTCh. 15 - Prob. 118QRTCh. 15 - Prob. 119QRTCh. 15 - Prob. 120QRTCh. 15 - Prob. 121QRTCh. 15 - Prob. 122QRTCh. 15 - You are given four different aqueous solutions and...Ch. 15 - Prob. 124QRTCh. 15 - Prob. 126QRTCh. 15 - Prob. 15.ACPCh. 15 - Prob. 15.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Determine whether aqueous solutions of the following salts have a pH equal to, greater than, or less than 7; if pH > 7 or pH< 7, write a chemical equation to justify your answer. (a) NH4Br. (b) Na2CO3, (c) KF, (d) KBr, (e) AICI3, (f) Co(NO3)2.arrow_forwardConsider a solution of 0.200 g of Sr(OH)2 in 3.00 L of solution. (a) Show the reaction of dissociation (ionization) of Sr(OH)2. Calculate (b) the molarity of Sr(OH)2 solution (c) the molarity of OH– ions (d) the pH of the solution.arrow_forward1.56 g of sodium acetate, NaCH;CO, has been 0.20 M ammonia, NH3, and 0.20 M ammonium 4. What is the pH of 0.15 M acetic acid to which 3. What is the pH of a solution that consists of aqueous solution of NH3? the same when you (c) add solid NaCl to a dilute aqueous solution of (b) add solid sodium acetate to a dilute a (a) add solid ammonium chloride to a dilute 1. Does the pH of the solution increase, decrease, or 17.1 and 17.2.) stay solution of acetic acid? aqueous NaOH? 2 Does the pH of the solution increase, decrease, or stay the same when you (a) add solid sodium oxalate, Na,C,O4, to 50.0 mL of 0.015 M oxalic acid, H,C,O4? (b) add solid ammonium chloride to 75 mL of 0.016 M HCl? (c) add 20.0 acetate, NaCH;CO2? of NaCl to 1.0 L of 0.10 M sodium *What is the pH of a solution that consists of chloride, NH4CI? added?arrow_forward
- When sodium fluoride (NaF) is added to an HF solution, what happens to the pH of the solution and why? (A) The pH will not change because NaF is an ionic compound that is neither acid nor base. (B) The pH will decrease because F– absorbs H+ and decreasing the H3O+(aq) concentration. (C) The pH will increase because F– absorbs H+ and decreasing the H3O+(aq) concentration. (D) The pH will not change because NaF is a neutral compound.arrow_forwardNitesharrow_forward(7) Calculate the pH of each of the following solutions: (a) 0.1000M Propanoic acid( HC H O,,K=1.3x105) (b) 0.1000M sodium propanoate (Na C HỎ) (c) 0.1000M HC₂H₂O, and 0.1000M Nа С¸¸0₂ 3 5 52 (d) After 0.020 mol of HCl is added to 1.00 L solution of (a) and (b) above. (e) After 0.020 mol of NaOH is added to 1.00 L solution of (a) and (b) above.arrow_forward
- The major component of vinegar is acetic acid, CH3COOH. Its Ka is 1.8 × 10-5 . One student used 1.000 M NaOH to titrate 25.00 mL vinegar. At the end point, 21.82 mL NaOH was used. (a) What is the concentration of CH3COOH in vinegar? (b) What is the pH of the solution at the end point? (c) What indicator(s) the student should use in this titration? Explainarrow_forwardWrite a net ionic equation for the reaction between aqueous solutions of (a) ammonia and hydrofluoric acid. (b) perchloric acid and rubidium hydroxide. (c) sodium aulfite and hydriodic acid. (d) nitric acid and calcium hydroxide.arrow_forwardA 0.1724-g sample of an unknown monoprotic acid was dissolved in 26.9 mL of water and titrated with 0.0623 M NaOH solution. The volume of base required to bring the solution to the equivalence point was 19.8 mL. (a) Calculate the molar mass of the acid. (b) After 11.5 mL of base had been added during the titration, the pH was determined to be 5.66. What is the Ka of the unknown acid?arrow_forward
- You are asked to prepare a pH = 3.00 buffer solution startingfrom 1.25 L of a 1.00 M solution of hydrofluoric acid(HF) and any amount you need of sodium fluoride (NaF).(a) What is the pH of the hydrofluoric acid solution priorto adding sodium fluoride? (b) How many grams of sodiumfluoride should be added to prepare the buffer solution?Neglect the small volume change that occurs when the sodiumfluoride is added.arrow_forwardA 0.1276 g sample of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.0633 M NaOH solution. The volume of base required to bring the solution to the equivalence point was 18.4 mL. (a) Calculate the molar mass of the acid. (b) After 10.0 mL of base had been added during the titration, the pH was determined to be 5.87. What is the Ka of the unknown acid? *only need help with barrow_forwardA solution NH3 that contains 72 mL of 0.043 M ammonia, NH3, is titrated with 0.083 M HCl. The Kb of ammonia is 1.8x10-5. (a) What volume of 0.083 M HCI would be added to reach the equivalence point? Give the volume in mL. 49 37 mL (b) At the equivalence point, what is the pH of the solution? (Assume that volumes are additive.) 40 8.98 X whawhat "at onubralence point" implies about the quantities of the combined acids and bases? Did you rememberarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY