Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 118QRT
(a)
Interpretation Introduction
Interpretation:
The precipitate or precipitates that are present at
Concept Introduction:
The
(b)
Interpretation Introduction
Interpretation:
The
Concept Introduction:
Refer to part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(4) A solution is made of a mixture of 0.500 M Calcium chloride and 0.0100 M iron (II) nitrate.
The two metals are to be separated by precipitation by increasing the pH.
(a) At what pH will the first metal begin to precipitate?
(b) At what pH will 99.9% of the first metal be precipitated?
(c) At what pH will the second metal begin to precipitate?
(d) Can the metals be separated successfully?
A buffer solution was prepared that contained 0.60 M hydrogen fluoride, HF (Ka = 7.2 x
104) and 1.00M potassium fluoride, KF. The total volume was 250 mL.
(a) What ions and molecules are present in the solution? List them in order of decreasing
concentration:
Decreasing order of Concentration
(b) What is the pH of the buffer solution described above?
(c) What is the pH of 100. mL of the buffer solution if you add 100. x 10-3 g of NaOH? Assume
negligible change in volume. (USEFUL INFORMATION: MM NaOH = 39.997 g mol-1)
31. (a) Calculate the pH of a mixture containing 0.1 M propanoic acid (CH3CH₂COOH) and
0.050 M sodium propanoate (CH3CH₂COONa)
(b) Determine the change in pH that occurs when 0.15 mol solid NaOH is added to 1.00
litre of the buffered solution.
32. (a) Calculate the pH of a buffer solution produced by adding 3.28 g of sodium ethanoate
to 1 dm3 of 0.01 M of ethanoic acid (Ka = 1.84x 10-5 at 300K)
(b) calculate the pH of this buffer if 10 cm3 of 0.1 M HCl are now added
Chapter 15 Solutions
Chemistry: The Molecular Science
Ch. 15.1 - Predict whether 1.0 L of each solution is a...Ch. 15.1 - Calculate the pH of blood containing 0.0020-M...Ch. 15.1 - Prob. 15.2ECh. 15.1 -
Calculate the ratio of [] to [] in blood at a...Ch. 15.1 - Use the data in Table 15.1 to select a conjugate...Ch. 15.1 -
Calculate the mole ratio of sodium acetate and...Ch. 15.1 - Calculate the pH of these buffers.
Ch. 15.1 - If an abnormally high CO2 concentration is present...Ch. 15.1 - Calculate the minimum mass (g) of KOH that would...Ch. 15.2 - For the titration of 50.0 mL of 0.100-M HCl with...
Ch. 15.2 - Draw the titration curve for the titration of 50.0...Ch. 15.2 - Use the Ka expression and value for acetic acid to...Ch. 15.2 - Explain why the curve for the titration of acetic...Ch. 15.4 - Write the Ksp expression for each of these...Ch. 15.4 - The Ksp of AgBr at 100 C is 5 1010. Calculate the...Ch. 15.4 - A saturated solution of silver oxalate. Ag2C2O4....Ch. 15.4 - Prob. 15.9CECh. 15.5 - Consider 0.0010-M solutions of these sparingly...Ch. 15.5 - Prob. 15.11PSPCh. 15.5 - Calculate the solubility of PbCl2 in (a) pure...Ch. 15.5 - Prob. 15.13PSPCh. 15.6 - (a) Determine whether AgCl precipitates from a...Ch. 15.6 - Prob. 15.15PSPCh. 15 - Prob. 1SPCh. 15 - Choose a weak-acid/weak-base conjugate pair from...Ch. 15 - Prob. 4SPCh. 15 - Define the term buffer capacity.Ch. 15 - What is the difference between the end point and...Ch. 15 - What are the characteristics of a good acid-base...Ch. 15 - A strong acid is titrated with a strong base, such...Ch. 15 - Repeat the description for Question 4, but use a...Ch. 15 - Use Le Chatelier’s principle to explain why PbCl2...Ch. 15 - Describe what a complex ion is and give an...Ch. 15 - Define the term “amphoteric”.
Ch. 15 - Distinguish between the ion product (Q) expression...Ch. 15 - Describe at least two ways that the solubility of...Ch. 15 - Briefly describe how a buffer solution can control...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Many natural processes can be studied in the...Ch. 15 - Which of these combinations is the best to buffer...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Calculate the mass of sodium acetate, NaCH3COO,...Ch. 15 - Calculate the mass in grams of ammonium chloride,...Ch. 15 - A buffer solution can be made from benzoic acid,...Ch. 15 - A buffer solution is prepared from 5.15 g NH4NO3...Ch. 15 - You dissolve 0.425 g NaOH in 2.00 L of a solution...Ch. 15 - A buffer solution is prepared by adding 0.125 mol...Ch. 15 - If added to 1 L of 0.20-M acetic acid, CH3COOH,...Ch. 15 - If added to 1 L of 0.20-M NaOH, which of these...Ch. 15 - Calculate the pH change when 10.0 mL of 0.100-M...Ch. 15 - Prob. 29QRTCh. 15 - Prob. 30QRTCh. 15 - Prob. 31QRTCh. 15 - The titration curves for two acids with the same...Ch. 15 - Explain why it is that the weaker the acid being...Ch. 15 - Prob. 34QRTCh. 15 - Consider all acid-base indicators discussed in...Ch. 15 - Which of the acid-base indicators discussed in...Ch. 15 - It required 22.6 mL of 0.0140-M Ba(OH)2 solution...Ch. 15 - It took 12.4 mL of 0.205-M H2SO4 solution to...Ch. 15 - Vitamin C is a monoprotic acid. To analyze a...Ch. 15 - An acid-base titration was used to find the...Ch. 15 - Calculate the volume of 0.150-M HCl required to...Ch. 15 - Calculate the volume of 0.225-M NaOH required to...Ch. 15 - Prob. 43QRTCh. 15 - Prob. 44QRTCh. 15 - Prob. 45QRTCh. 15 - Explain why rain with a pH of 6.7 is not...Ch. 15 - Identify two oxides that are key producers of acid...Ch. 15 - Prob. 48QRTCh. 15 - Prob. 49QRTCh. 15 - Prob. 50QRTCh. 15 - Prob. 51QRTCh. 15 - A saturated solution of silver arsenate, Ag3AsO4,...Ch. 15 - Prob. 53QRTCh. 15 - Prob. 54QRTCh. 15 - Prob. 55QRTCh. 15 - Prob. 56QRTCh. 15 - Prob. 57QRTCh. 15 - Prob. 58QRTCh. 15 - Prob. 59QRTCh. 15 - Prob. 60QRTCh. 15 - Prob. 61QRTCh. 15 - Prob. 62QRTCh. 15 - Prob. 63QRTCh. 15 - Prob. 64QRTCh. 15 - Predict what effect each would have on this...Ch. 15 - Prob. 66QRTCh. 15 - Prob. 67QRTCh. 15 - The solubility of Mg(OH)2 in water is...Ch. 15 - Prob. 69QRTCh. 15 - Prob. 70QRTCh. 15 - Prob. 71QRTCh. 15 - Prob. 72QRTCh. 15 - Write the chemical equation for the formation of...Ch. 15 - Prob. 74QRTCh. 15 - Prob. 75QRTCh. 15 - Prob. 76QRTCh. 15 - Prob. 77QRTCh. 15 - Prob. 78QRTCh. 15 - Prob. 79QRTCh. 15 - Prob. 80QRTCh. 15 - Prob. 81QRTCh. 15 - Solid sodium fluoride is slowly added to an...Ch. 15 - Prob. 83QRTCh. 15 - Prob. 84QRTCh. 15 - A buffer solution was prepared by adding 4.95 g...Ch. 15 - Prob. 86QRTCh. 15 - Prob. 87QRTCh. 15 - Prob. 88QRTCh. 15 - Prob. 89QRTCh. 15 - Which of these buffers involving a weak acid HA...Ch. 15 - Prob. 91QRTCh. 15 - Prob. 92QRTCh. 15 - When 40.00 mL of a weak monoprotic acid solution...Ch. 15 - Each of the solutions in the table has the same...Ch. 15 - Prob. 95QRTCh. 15 - Prob. 97QRTCh. 15 - The average normal concentration of Ca2+ in urine...Ch. 15 - Explain why even though an aqueous acetic acid...Ch. 15 - Prob. 100QRTCh. 15 - Prob. 101QRTCh. 15 - Prob. 102QRTCh. 15 - Prob. 103QRTCh. 15 - Prob. 104QRTCh. 15 - Apatite, Ca5(PO4)3OH, is the mineral in teeth.
On...Ch. 15 - Calculate the maximum concentration of Mg2+...Ch. 15 - Prob. 107QRTCh. 15 - Prob. 108QRTCh. 15 - The grid has six lettered boxes, each of which...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Prob. 112QRTCh. 15 - Prob. 113QRTCh. 15 - Prob. 114QRTCh. 15 - Prob. 115QRTCh. 15 - You want to prepare a pH 4.50 buffer using sodium...Ch. 15 - Prob. 117QRTCh. 15 - Prob. 118QRTCh. 15 - Prob. 119QRTCh. 15 - Prob. 120QRTCh. 15 - Prob. 121QRTCh. 15 - Prob. 122QRTCh. 15 - You are given four different aqueous solutions and...Ch. 15 - Prob. 124QRTCh. 15 - Prob. 126QRTCh. 15 - Prob. 15.ACPCh. 15 - Prob. 15.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A buffer is prepared by adding 5.0 g of ammonia, NH3, and 20.0 g of ammonium chloride, NH4Cl, to enough water to form 2.50 L of solution. (a) What is the pH of the buffer? (b) Write the complete ionic equation for the reaction that occurs when a few drops of nitric acid are added to the buffer. (c) Write the complete ionic equation for the reaction that occurs when a few drops of potassium hydroxide solution are added to the buffer.arrow_forward2. A buffer solution is prepared by dissolving 4.7 g of nitrous acid, HNO2 , and 13.8 g of sodium nitrite, NaNO2, in 1.0 liter of solution. (a) Calculate the pH of the buffer. (b) Calculate the pH of the solution which results when the following are added to separate 100 mL portions of the buffer: (i) 5.0 mmol of HCl; (ii) 5.0 mmol of NAOH . Ka = 4.5 x 10*arrow_forwardA 5.145 g sample of a solid, weak, monoprotic acid is used to make a 100.0 mL solution. 27.00 mL of the resulting acid solution is then titrated with 0.09636 M NaOH. The pH after the addition of 16.00 mL of the base is 5.75, and the endpoint is reached after the addition of 45.85 mL of the base. (a) How many moles of acid were present in the 27.00 mL sample?4.42e-3 mol(b) What is the molar mass of the acid?314 g/mol(c) What is the pKa of the acid? (only confused on part c, answers for a and b are given)arrow_forward
- A 5.296 g sample of a solid, weak, monoprotic acid is used to make a 100.0 mL solution. 30.00 mL of the resulting acid solution is then titrated with 0.09755 M NaOH. The pH after the addition of 21.00 mL of the base is 5.02, and the endpoint is reached after the addition of 46.38 mL of the base. (a) How many moles of acid were present in the 30.00 mL sample? 0.004524 mol(b) What is the molar mass of the acid?351.1 g/mol(c) What is the pKa of the acid? just need help with part Carrow_forwardIn an air pollution analysis, 3 L of polluted air is passed through 50 mL of 0,0116 M Ba(OH)2 solution and the carbon dioxide (CO2) in it is precipitated as BaCO3. The excess of the base is titrated with 23.6 mL 0.0108 M HCl in addition to the phenol phthalate indicator. Calculate the CO2 concentration in this air sample in ppm.(Take the density of CO2 as 1.98 g/L, C=12, O=16 g/mol).arrow_forwardA 1.09 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water and titrated with a à 0.442 M aqueous barium hydroxide solution. It is observed that after 4.07 milliliters of barium hydroxide have been added, the pH is 4.497 and that an additional. 6.73 mL of the barium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? (2) What is the value of K, for the acid? g/molarrow_forward
- 33. Consider a buffer solution that contains 0.45 M HCOOH and 0.55 M NaHCOO. Note that the Ka for formic acid (HCOOH) is 1.8 x 104. (a) Calculate the pH of this buffer solution. pH = (b) Write the net ionic chemical equation that occurs when potassium hydroxide (KOH) (MW of KOH = 56.1 g/mol) is added to the buffer. (c) If 0.260 g of solid KOH is added to 250. mL of this buffer solution, what is the resulting pH of the solution? New pH =arrow_forwardYou are asked to prepare a pH = 3.00 buffer solution startingfrom 1.25 L of a 1.00 M solution of hydrofluoric acid(HF) and any amount you need of sodium fluoride (NaF).(a) What is the pH of the hydrofluoric acid solution priorto adding sodium fluoride? (b) How many grams of sodiumfluoride should be added to prepare the buffer solution?Neglect the small volume change that occurs when the sodiumfluoride is added.arrow_forwardConsider an analyte solution of 50.0 mL of 0.050 M hydrochloric acid, HCl, titrated against 0.10 M sodium hydroxide, NaOH (g) After adding 37.50 mL of the NaOH, 50% past the equivalence point, what ions or molecules are present in the solution? (h) Which of the species you identified in part (g) will determine the pH of the solution?arrow_forward
- (a) Write the net ionic equation for the reaction that occurswhen a solution of hydrochloric acid (HCl) is mixed with asolution of sodium formate (NaCHO2). (b) Calculate theequilibrium constant for this reaction. (c) Calculate theequilibrium concentrations of Na+, Cl-, H+, CHO2-, andHCHO2 when 50.0 mL of 0.15 M HCl is mixed with 50.0 mLof 0.15 M NaCHO2.arrow_forwardA 0.717 gram sample of an unknown monoprotic acid is dissolved in 40.0 mL of water and titrated with a a 0.221 M aqueous barium hydroxide solution. It is observed that after 8.28 milliliters of barium hydroxide have been added, the pH is 3.465 and that an additional 4.32 mL of the barium hydroxide solution is required to reach the equivalence point.(1) What is the molecular weight of the acid? g/mol(2) What is the value of Ka for the acid?arrow_forwardA 0.804 gram sample of an unknown monoprotic acid is dissolved in 30.0 mL of water and titrated with a a 0.465 M aqueous barium hydroxide solution. It is observed that after 2.54 milliliters of barium hydroxide have been added, the pH is 3.089 and that an additional 4.21 mL of the barium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? (2) What is the value of Ka for the acid? g/molarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY