PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 35P
The 5-Mg bus B is traveling to the right at 20 m/s. Meanwhile a 2-Mg car A is traveling at 15 m/s to the right. If the vehicles crash and become entangled, determine their common velocity just after the collision. Assume that the vehicles are free to roll during collision.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 2.5-Mg pickup truck is towing the 1.5-Mg car using a cable as shown. If the car is initially at rest and the truck is coasting with a velocity of 30 km/h when the cable is slack, determine:
1. The common velocity of the truck and the car just after the cable becomes taut.
2. The loss of energy
Car A has a weight of 4500 Ib and is traveling to the right at 3 ft/s. Meanwhile, a 3000-lb car B is traveling at 6 ft/s to the left. If the cars crash head-on and become entangled, determine their common velocity in ft/s just after the collision. Assume that the brakes are not applied during a collision.
The two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1180 kg and car B has a mass of 1740 kg. The cars become entangled and move off together with a common velocity in the direction indicated. If car A was traveling 43 km/h at the instant of impact, compute the corresponding velocity of car B just before impact.
Chapter 15 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 15 - The 0.5kg ball strikes the rough ground and...Ch. 15 - Prob. 2FPCh. 15 - Prob. 3FPCh. 15 - The wheels of the 1.5-Mg car generate the traction...Ch. 15 - Prob. 5FPCh. 15 - If the coefficient of kinetic friction between the...Ch. 15 - Prob. 3PCh. 15 - Each of the cables can sustain a maximum tension...Ch. 15 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15 - Prob. 8P
Ch. 15 - Prob. 9PCh. 15 - During operation the jack hammer strikes the...Ch. 15 - For a short period of time, the frictional driving...Ch. 15 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15 - Prob. 14PCh. 15 - The towing force acting on the 400-kg safe varies...Ch. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15 - Prob. 23PCh. 15 - The balloon has a total mass of 400 kg including...Ch. 15 - Prob. 26PCh. 15 - Prob. 30PCh. 15 - Prob. 7FPCh. 15 - The cart and package have a mass of 20 kg and 5...Ch. 15 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15 - Prob. 10FPCh. 15 - Prob. 11FPCh. 15 - The cannon and support without a projectile have a...Ch. 15 - The 5-Mg bus B is traveling to the right at 20...Ch. 15 - Prob. 36PCh. 15 - A railroad car having a mass of 15 Mg is coasting...Ch. 15 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15 - Prob. 39PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15 - Block A has a mass of 5 kg and is placed on the...Ch. 15 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15 - Prob. 56PCh. 15 - Prob. 13FPCh. 15 - Prob. 14FPCh. 15 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15 - The ball strikes the smooth wall with a velocity...Ch. 15 - Prob. 17FPCh. 15 - Prob. 18FPCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15 - Prob. 69PCh. 15 - Prob. 73PCh. 15 - Two smooth disks A and B each have a mass of 0.5...Ch. 15 - Prob. 75PCh. 15 - The cue ball A is given an initial velocity (vA)1...Ch. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - A ball of negligible size and mass m is given a...Ch. 15 - Prob. 81PCh. 15 - The 20-lb box slides on the surface for which k =...Ch. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 90PCh. 15 - Prob. 92PCh. 15 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15 - Prob. 19FPCh. 15 - Prob. 20FPCh. 15 - Initially the 5-kg block is moving with a constant...Ch. 15 - Prob. 22FPCh. 15 - Prob. 23FPCh. 15 - Prob. 24FPCh. 15 - Determine the angular momentum HO of the 6-lb...Ch. 15 - Determine the angular momentum HP of the 6-lb...Ch. 15 - Prob. 96PCh. 15 - Determine the angular momentum Hp, of each of the...Ch. 15 - Prob. 98PCh. 15 - Determine the angular momentum Hp of the 3-kg...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - If the rod of negligible mass is subjected to a...Ch. 15 - The amusement park ride consists of a 200-kg car...Ch. 15 - An earth satellite of mass 700 kg is launched into...Ch. 15 - Prob. 115PCh. 15 - Prob. 116PCh. 15 - Prob. 119PCh. 15 - The gauge pressure of water at A is 150.5 kPa....Ch. 15 - Prob. 121PCh. 15 - The fountain shoots water in the direction shown....Ch. 15 - A plow located on the front of a locomotive scoops...Ch. 15 - Prob. 124PCh. 15 - Water is discharged from a nozzle with a velocity...Ch. 15 - Prob. 127PCh. 15 - Prob. 128PCh. 15 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15 - Prob. 133PCh. 15 - A rocket has an empty weight of 500 lb and carries...Ch. 15 - Prob. 135PCh. 15 - Prob. 138PCh. 15 - The missile weighs 40 000 lb. The constant thrust...Ch. 15 - Prob. 140PCh. 15 - Prob. 1RPCh. 15 - Prob. 2RPCh. 15 - Prob. 3RPCh. 15 - Prob. 4RPCh. 15 - The 200-g projectile is fired with a velocity of...Ch. 15 - Block A has a mass of 3 kg and is sliding on a...Ch. 15 - Two smooth billiard balls A and B have an equal...Ch. 15 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The boy jumps off the flat car at A with a velocity of vv = 4 ft/s relative to the car as shown. He lands on the second flat car BB. Each car has a weight of 88 lb . The boy's weight is 60 lb. Both cars are originally at rest. Neglect the mass of the cars wheels. (Figure 1)arrow_forwardIt takes 33 s for the 48-Mg tugboat to increase its speed uniformly to 25 km/h, starting from rest. The propeller provides the propulsion force F which gives the tugboat forward motion, whereas the barge moves freely. The barge has a mass of 80 Mg.arrow_forwardThe two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1985 kg and car B has a mass of 1540 kg. The cars become entangled and move off together with a common velocity in the direction indicated. If car A was traveling 57 km/h at the instant of impact, compute the corresponding velocity of car B just before impact. --x A = 57 km/h Answer: Vg= i km/harrow_forward
- The two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1000 kg and car B has a mass of 1775 kg. The cars become entangled and move off together with a common velocity in the direction indicated. If car A was traveling 42 km/h at the instant of impact, compute the corresponding velocity of car B just before impact. 21 VA = 42 km/h Answer: Vâ = i km/harrow_forwardTwo carts are positioned on an air track. Cart A has a mass m and has a spring on one end. Cart B has a mass 2m and is at rest. Cart A moves toward cart B at a speed +v until the two carts have an elastic collision. Which one of the following statements concerning this situation is true? After the collision, both cars are moving in the positive direction. The total kinetic energy after the collision is equal to m². Car B will be at rest after the collision. Car A will be at rest after the collision. The magnitude of the final velocity of Car A will be greater than that of car B.arrow_forwardEach of the two systems is released from rest. The 20 N cylinder is replaced by a force of 20 N, calculate the speed of the 50 N cylinder after the 40 N cylinder has dropped 1.8 m.arrow_forward
- Car B weighing 3830 lb and traveling west at vg = 60 mi/hr collides with car A weighing 2210 lb and traveling north at VA = 62 mi/hr as shown. If the two cars become entangled and move together as a unit after the crash, compute the magnitude v of their common velocity immediately after the impact and the angle 0 made by the velocity vector with the north direction. Answers: V= i B mi/hr Oarrow_forwardThe 150-kg glider B is being towed by airplane A, which is flying horizontally with a constant speed of v = 218 km/h. The tow cable has a length r = 51 m and may be assumed to form a straight line. The glider is gaining altitude and when θ reaches 16°, the angle is increasing at the constant rate = 3 deg/s. At the same time the tension in the tow cable is 1235 N for this position. Calculate the ff: a. the magnitude of the acceleration of glider B. b. aerodynamic lift L and drag D acting on the glider.arrow_forward2) The collar has a mass of 2 kg and is attached to the light spring, which has a stiffness of 30 N/m and an unstretched length of 1.5 m. The collar is released from rest at A and slides up the smooth rod under the action of the constant 50-N force. Calculate the velocity u of the collar as it passes position B. Ans. V=4.93 m m 1.5 m 30° 50 N k= 30 N/m 2m 3arrow_forward
- The two cars collide at right angles in the intersection of two icy roads. Car A has a mass of 1380 kg and car B has a mass of 1580 kg. The cars become entangled and move off together with a common velocity in the direction indicated. If car A was traveling 40 km/h at the instant of impact, compute the corresponding velocity of car B just before impact.arrow_forwardThe 150-kg glider B is being towed by airplane A, which is flying horizontally with a constant speed of v = 218 km/h. The tow cable has a length r = 51 m and may be assumed to form a straight line. The glider is gaining altitude and when e reaches 16°, the angle is increasing at the constant rate ở = 3 deg/s. At the same time the tension in the tow cable is 1235 N for this position. Calculate the aerodynamic lift L and drag D acting on the glider. Assume o = 11°. B A Part 1 Calculate the magnitude of the acceleration of glider B. Answer: a = i m/s? Attempts: 0 of 1 used Submit Answer Save for Later Part 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardThe 15-Mg boxcar A is coasting freely at 1.5 m/s on the horizontal track when it encounters a tank car B having a mass of 12 Mg and coasting at 0.75 m/s toward it as shown in the figure. If the cars meet and couple together, determine the average force between them if the coupling takes place in 0.8s. 15 m/s 0.75 m/s O 18.8 KN O 6.2 KN o 24.4 KN O36.9 KNarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY