PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 8FP
The cart and package have a mass of 20 kg and 5 kg, respectively. If the cart has a smooth surface and it is initially at rest, while the velocity of the package is as shown, determine the final common velocity of the cart and package after the impact.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
F15-8. The cart and package have a mass of 20 kg and
5 kg, respectively. If the cart has a smooth surface and it is
initially at rest, while the velocity of the package is as shown,
determine the final common velocity of the cart and
package after the impact.
10 m/s
A 50,000 lb box car going 25 mi/h is to be hitched to a gondola carrying bulk copper ore (netweight = 100,000 lb). Determine the velocity of both the railroad cars after being hitched if thegondola is initially at rest. Determine the time it takes for both railroad cars to come to rest. μk (Gondola)= 0.30
The 0.5-kg ball of negligible size is
fired up the smooth vertical circular
track using the spring plunger. The
plunger keeps the spring
compressed 0.08 m when s=0.
Determine how far s (m) it must be
pulled back and released so that the
ball will begin to leave the track
when 0 = 135°. R=2,4 m, k-486
N/m, g-9.81 m/s². Note: Please
write only 2 digits after the comma!
k (N/m)
135⁰
R (m)
Chapter 15 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 15 - The 0.5kg ball strikes the rough ground and...Ch. 15 - Prob. 2FPCh. 15 - Prob. 3FPCh. 15 - The wheels of the 1.5-Mg car generate the traction...Ch. 15 - Prob. 5FPCh. 15 - If the coefficient of kinetic friction between the...Ch. 15 - Prob. 3PCh. 15 - Each of the cables can sustain a maximum tension...Ch. 15 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15 - Prob. 8P
Ch. 15 - Prob. 9PCh. 15 - During operation the jack hammer strikes the...Ch. 15 - For a short period of time, the frictional driving...Ch. 15 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15 - Prob. 14PCh. 15 - The towing force acting on the 400-kg safe varies...Ch. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15 - Prob. 23PCh. 15 - The balloon has a total mass of 400 kg including...Ch. 15 - Prob. 26PCh. 15 - Prob. 30PCh. 15 - Prob. 7FPCh. 15 - The cart and package have a mass of 20 kg and 5...Ch. 15 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15 - Prob. 10FPCh. 15 - Prob. 11FPCh. 15 - The cannon and support without a projectile have a...Ch. 15 - The 5-Mg bus B is traveling to the right at 20...Ch. 15 - Prob. 36PCh. 15 - A railroad car having a mass of 15 Mg is coasting...Ch. 15 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15 - Prob. 39PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15 - Block A has a mass of 5 kg and is placed on the...Ch. 15 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15 - Prob. 56PCh. 15 - Prob. 13FPCh. 15 - Prob. 14FPCh. 15 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15 - The ball strikes the smooth wall with a velocity...Ch. 15 - Prob. 17FPCh. 15 - Prob. 18FPCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15 - Prob. 69PCh. 15 - Prob. 73PCh. 15 - Two smooth disks A and B each have a mass of 0.5...Ch. 15 - Prob. 75PCh. 15 - The cue ball A is given an initial velocity (vA)1...Ch. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - A ball of negligible size and mass m is given a...Ch. 15 - Prob. 81PCh. 15 - The 20-lb box slides on the surface for which k =...Ch. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 90PCh. 15 - Prob. 92PCh. 15 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15 - Prob. 19FPCh. 15 - Prob. 20FPCh. 15 - Initially the 5-kg block is moving with a constant...Ch. 15 - Prob. 22FPCh. 15 - Prob. 23FPCh. 15 - Prob. 24FPCh. 15 - Determine the angular momentum HO of the 6-lb...Ch. 15 - Determine the angular momentum HP of the 6-lb...Ch. 15 - Prob. 96PCh. 15 - Determine the angular momentum Hp, of each of the...Ch. 15 - Prob. 98PCh. 15 - Determine the angular momentum Hp of the 3-kg...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - If the rod of negligible mass is subjected to a...Ch. 15 - The amusement park ride consists of a 200-kg car...Ch. 15 - An earth satellite of mass 700 kg is launched into...Ch. 15 - Prob. 115PCh. 15 - Prob. 116PCh. 15 - Prob. 119PCh. 15 - The gauge pressure of water at A is 150.5 kPa....Ch. 15 - Prob. 121PCh. 15 - The fountain shoots water in the direction shown....Ch. 15 - A plow located on the front of a locomotive scoops...Ch. 15 - Prob. 124PCh. 15 - Water is discharged from a nozzle with a velocity...Ch. 15 - Prob. 127PCh. 15 - Prob. 128PCh. 15 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15 - Prob. 133PCh. 15 - A rocket has an empty weight of 500 lb and carries...Ch. 15 - Prob. 135PCh. 15 - Prob. 138PCh. 15 - The missile weighs 40 000 lb. The constant thrust...Ch. 15 - Prob. 140PCh. 15 - Prob. 1RPCh. 15 - Prob. 2RPCh. 15 - Prob. 3RPCh. 15 - Prob. 4RPCh. 15 - The 200-g projectile is fired with a velocity of...Ch. 15 - Block A has a mass of 3 kg and is sliding on a...Ch. 15 - Two smooth billiard balls A and B have an equal...Ch. 15 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 20-gg bullet is traveling at 400 m/sm/s when it becomes embedded in the 2-kgkg stationary block. The coefficient of kinetic friction between the block and the plane is μkμkmu = 0.2. Determine the distance the block will slide before it stops. Express your answer to three significant figures and include the appropriate units.arrow_forwardThe box having a weight of 40 N is moving to the right along a rough surface. When the package is at point A, its speed is 5m/s. The spring of stiffness k-200 N/m brings the box to rest. It is known that the friction between the box and the surface is 0.3, determine the maximum force in the spring. Neglect the mass of the end plate attached to the spring. -2 m-- W Aarrow_forwardThe 1940-kg car has a velocity of 20 km/h up the 9-percent grade when the driver applies more power for 11 s to bring the car up to a speed of 67 km/h. Calculate the time average F of the total force tangent to the road exerted on the tires during the 11 s. Treat the car as a particle and neglect air resistance. 100 Answer: F = i kNarrow_forward
- The 15-Mg truck drives onto the 310-Mg barge from the dock at 27 km/h and brakes to stop on the deck. The barge is free to move in the water, which offers negligible resistance to motion at low speeds. Calculate the speed of the barge after the truck has come to rest on it. 27 km/h 310 Mg 15 Mg Answer: v = i km/harrow_forwardThe crate, which has a mass of 180 kg If it is originally at rest, determine the distance it slides in order to attain a speed of 9 m/s. The coefficient of kinetic friction between the crate and the surface is μk = 0.2. Please answer using 3 sig figs.arrow_forwardWhen the trailer coupling at A fails, the vehicle is traveling at 30 kph. Determine the continuous horizontal force caused by rolling friction and wind resistance that causes the trailer to halt if it has a mass of 300 kgs. and coasts 45 meters before coming to a stop. Draw the corresponding FBDarrow_forward
- The 2.8 Mg truck is traveling at 17 m/s when the brakes on all its wheels are applied, causing it to skid for a distance of 17 m before coming to rest. Determine the frictional force (in N) developed between the tires of the truck and the road during this time. The total mass of the boat and trailer is 0.9 Mg.arrow_forwardA heavy chain with a mass per unit length of 5.6 kg/m is pulled by the constant force P = 85 N along a horizontal surface consisting of a smooth section and a rough section. The chain is initially at rest on the rough surface with x = 0. If the coefficient of kinetic friction between the chain and the rough surface is 0.53, determine the velocity v of the chain when x = 2.8 m. Rough Answer: v= i 2.8 m Smooth m/sarrow_forwardThe collar has a mass of 28-kg and slides along the smooth rod. Two springs are attached to it and the ends of the rod as shown. S kA kB: 12 0.25 m Each spring has an uncompressed length of I1=2-m and l2=3-m and stiffnesses k1=51-N/m and k2=176-N/m respectively. Determine the velocity that must be subjected to the collar to generate a compression of 0.7 marrow_forward
- A 50,000 lb box car going 2.5 mi/h is to be hitched to a gondola carrying bulk copper ore (net weight = 100,000lb). Determine the velocity of both the railroad cars after being hitched if the gondola is initially at rest. Determine thetime it takes for both railroad cars to come to rest. μk (Gondola) = 0.30arrow_forwardThe 5 lb weigh shone has a velocity of 10 ft/s when it is 3 ft above the spring platform Cables hold the spring at a length of 1 ft.. Ignore the weight of the cables and the platform. The uncompressed length of the spring is 1.75 ft. Determine the maximum additional compression of the spring. 5 lb 10 ft/s 3 ft x, = 0.75 ft. k = 400 lb/ftarrow_forwardA 100kg crate is originally at rest and is subjected to two forces. Determine the distance(m) it slides to reach a speed of 18. The coefficient of kinetic friction between the crate and the surface is uk=0.3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY