PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 45P
To determine
The speed
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The roller coaster and its passenger have a total mass m. Determine the smallest
velocity it must have when it enters the loop at A so that it can complete the loop and not leave
the track. Also, determine the normal force the tracks exert on the car when it comes around to
the bottom at C. The radius of curvature of the tracks at B is p3 , and at C it is Pc. Neglect the
size of the car. Points A and C are at the same elevation.
B
PB
The 180-g slider has a speed v= 1.4 m/s as it passes point A of the smooth guide, which lies in a horizontal plane. Determine the
magnitude R of the force which the guide exerts on the slider (a) just before it passes point A of the guide and (b) as it passes point B.
Answers:
(a) R₂ =
(b) RB =
i
i
-200 mm
B
N
N
A roller coaster car has a mass of 600 kg when fully loaded with passengers. If the car has a speed of 20 m/sec at point A, what is the maximum speed the car can have at B and still remain on the track?
Chapter 15 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 15 - The 0.5kg ball strikes the rough ground and...Ch. 15 - Prob. 2FPCh. 15 - Prob. 3FPCh. 15 - The wheels of the 1.5-Mg car generate the traction...Ch. 15 - Prob. 5FPCh. 15 - If the coefficient of kinetic friction between the...Ch. 15 - Prob. 3PCh. 15 - Each of the cables can sustain a maximum tension...Ch. 15 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15 - Prob. 8P
Ch. 15 - Prob. 9PCh. 15 - During operation the jack hammer strikes the...Ch. 15 - For a short period of time, the frictional driving...Ch. 15 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15 - Prob. 14PCh. 15 - The towing force acting on the 400-kg safe varies...Ch. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15 - Prob. 23PCh. 15 - The balloon has a total mass of 400 kg including...Ch. 15 - Prob. 26PCh. 15 - Prob. 30PCh. 15 - Prob. 7FPCh. 15 - The cart and package have a mass of 20 kg and 5...Ch. 15 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15 - Prob. 10FPCh. 15 - Prob. 11FPCh. 15 - The cannon and support without a projectile have a...Ch. 15 - The 5-Mg bus B is traveling to the right at 20...Ch. 15 - Prob. 36PCh. 15 - A railroad car having a mass of 15 Mg is coasting...Ch. 15 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15 - Prob. 39PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15 - Block A has a mass of 5 kg and is placed on the...Ch. 15 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15 - Prob. 56PCh. 15 - Prob. 13FPCh. 15 - Prob. 14FPCh. 15 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15 - The ball strikes the smooth wall with a velocity...Ch. 15 - Prob. 17FPCh. 15 - Prob. 18FPCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15 - Prob. 69PCh. 15 - Prob. 73PCh. 15 - Two smooth disks A and B each have a mass of 0.5...Ch. 15 - Prob. 75PCh. 15 - The cue ball A is given an initial velocity (vA)1...Ch. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - A ball of negligible size and mass m is given a...Ch. 15 - Prob. 81PCh. 15 - The 20-lb box slides on the surface for which k =...Ch. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 90PCh. 15 - Prob. 92PCh. 15 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15 - Prob. 19FPCh. 15 - Prob. 20FPCh. 15 - Initially the 5-kg block is moving with a constant...Ch. 15 - Prob. 22FPCh. 15 - Prob. 23FPCh. 15 - Prob. 24FPCh. 15 - Determine the angular momentum HO of the 6-lb...Ch. 15 - Determine the angular momentum HP of the 6-lb...Ch. 15 - Prob. 96PCh. 15 - Determine the angular momentum Hp, of each of the...Ch. 15 - Prob. 98PCh. 15 - Determine the angular momentum Hp of the 3-kg...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - If the rod of negligible mass is subjected to a...Ch. 15 - The amusement park ride consists of a 200-kg car...Ch. 15 - An earth satellite of mass 700 kg is launched into...Ch. 15 - Prob. 115PCh. 15 - Prob. 116PCh. 15 - Prob. 119PCh. 15 - The gauge pressure of water at A is 150.5 kPa....Ch. 15 - Prob. 121PCh. 15 - The fountain shoots water in the direction shown....Ch. 15 - A plow located on the front of a locomotive scoops...Ch. 15 - Prob. 124PCh. 15 - Water is discharged from a nozzle with a velocity...Ch. 15 - Prob. 127PCh. 15 - Prob. 128PCh. 15 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15 - Prob. 133PCh. 15 - A rocket has an empty weight of 500 lb and carries...Ch. 15 - Prob. 135PCh. 15 - Prob. 138PCh. 15 - The missile weighs 40 000 lb. The constant thrust...Ch. 15 - Prob. 140PCh. 15 - Prob. 1RPCh. 15 - Prob. 2RPCh. 15 - Prob. 3RPCh. 15 - Prob. 4RPCh. 15 - The 200-g projectile is fired with a velocity of...Ch. 15 - Block A has a mass of 3 kg and is sliding on a...Ch. 15 - Two smooth billiard balls A and B have an equal...Ch. 15 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- It takes 35 seconds for the 50-Mg tugboat to increase its speed uniformly to 25km/h, starting from rest. The barge has a mass of 75 Mg. The propeller provides the propulsionforce F which gives the tugboat forward motion, whereas the barge moves freely. Determine Facting on the tugboat.arrow_forwardThe ice-hockey puck with a mass of 0.17 kg has a velocity of 11 m/s before being struck by the hockey stick. After the impact the puck moves in the new direction shown with a velocity of 20 m/s. If the stick is in contact with the puck for 0.06 s, compute the magnitude of the average force F exerted by the stick on the puck during contact, and find the angle B made by F with the x-direction. 11 m/s 16% 20 m/sarrow_forwardThe horizontal force P = 40-10t N (t is the time measured in seconds) is applied to the 2- kg collar that slides along the inclined rod. 2 kg- -P = (40– 10r)N At time t = 0, the position coordinate of the collar is x = 0, and its velocity is vo = 3 m/s directed down the rod. Find the time T and the speed Sof the collar when it returns to the position x = 0 for the first time. Neglect friction.arrow_forward
- The spring of constant k = 120 N/m is unstretched when the slider of mass m = 1.6 kg passes position B. If the slider is released fre rest in position A, determine its speed as it passes points B and C. What is the normal force exerted by the guide on the slider at position C? Neglect friction between the mass and the circular guide, which lies in a vertical plane. The distance R = 0.95 m. m B Answers Vg = m/s Vc= i m/s Nc=arrow_forwardAt the instant, e=60°, the boy's center of mass G has a downward speed vG=15 ft/s. Determine the rate of increase in his speed and the tension in each of the two supporting cords of the swing at this instant. The boy has a weight of 60 lb. Neglect his size and the mass of the seat and cords. 10 ft -Garrow_forwardshow the complete solution and show the free body diagramarrow_forward
- The ice-hockey puck with a mass of 0.25 kg has a velocity of 10 m/s before being struck by the hockey stick. After the impact the puck moves in the new direction shown with a velocity of 17 m/s. If the stick is in contact with the puck for 0.06 s, compute the magnitude of the average force F exerted by the stick on the puck during contact, and find the angle ß made by F with the x-direction. 10 m/s 15% Answers: F= i B = i 17 m/s N Oarrow_forwardThe ball of mass m is guided along the vertical circular path r = 4cos(0)meters using the arm OA. If the arm has a constant angular velocity Ô00 = 1rad/s determine the angle 0 < 45° at which the ball starts to leave the surface of the semicylinder. Neglect friction and the size of the ball. Enter the angle in degrees in the box below.arrow_forwardThe 5-lb collar slides on the smooth rod, so that when it is at 4 it has a speed of 10 ft/s. If the spring to which it is attached has an unstretched length of 3 ft. and a stiffness of k = 10 lb/ft, determine the normal force on the collar and the acceleration of the collar at this instant. Solution: 2 ft 10 ft/sarrow_forward
- Solve correctly please.arrow_forwardSolve it pls.arrow_forwardIf the motor draws in the cable with an acceleration of 3 m/s^2, determine the reactions at the supports A and B. The beam has a uniform mass of 30 kg/m, and the crate has a mass of 200 kg. Neglect the mass of the motor and pulleys.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY