PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 92P
To determine
The coefficient of restitution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The pool ball A travels with a velocity of 10 m/s just before it strikes ball B, which is at rest. If the masses of A and B are-each 276 g,
and the coefficient of restitution between them is e = 1, determine the velocity of ball B just after impact.
4. The 12-kg package A has a speed of 2.5 m/s when it enters the smooth ramp. As it slides down the ramp, it strikes the 34-kg package B which is initially at rest. If the coefficient of restitution between A and Bis = 0.65, determine the velocity of B just after the impact.
A ball of negligible size and mass m is given a velocity of v0 on the center of the cart which has a mass M and is originally at rest. If the coefficient of restitution between the ball and walls A and B is e, determine the velocity of the ball and the cart just after the ball strikes A. Also, determine the total time needed for the ball to strike A, rebound, then strike B, and rebound and then return to the center of the cart. Neglect friction
Chapter 15 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 15 - The 0.5kg ball strikes the rough ground and...Ch. 15 - Prob. 2FPCh. 15 - Prob. 3FPCh. 15 - The wheels of the 1.5-Mg car generate the traction...Ch. 15 - Prob. 5FPCh. 15 - If the coefficient of kinetic friction between the...Ch. 15 - Prob. 3PCh. 15 - Each of the cables can sustain a maximum tension...Ch. 15 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15 - Prob. 8P
Ch. 15 - Prob. 9PCh. 15 - During operation the jack hammer strikes the...Ch. 15 - For a short period of time, the frictional driving...Ch. 15 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15 - Prob. 14PCh. 15 - The towing force acting on the 400-kg safe varies...Ch. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15 - Prob. 23PCh. 15 - The balloon has a total mass of 400 kg including...Ch. 15 - Prob. 26PCh. 15 - Prob. 30PCh. 15 - Prob. 7FPCh. 15 - The cart and package have a mass of 20 kg and 5...Ch. 15 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15 - Prob. 10FPCh. 15 - Prob. 11FPCh. 15 - The cannon and support without a projectile have a...Ch. 15 - The 5-Mg bus B is traveling to the right at 20...Ch. 15 - Prob. 36PCh. 15 - A railroad car having a mass of 15 Mg is coasting...Ch. 15 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15 - Prob. 39PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15 - Block A has a mass of 5 kg and is placed on the...Ch. 15 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15 - Prob. 56PCh. 15 - Prob. 13FPCh. 15 - Prob. 14FPCh. 15 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15 - The ball strikes the smooth wall with a velocity...Ch. 15 - Prob. 17FPCh. 15 - Prob. 18FPCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15 - Prob. 69PCh. 15 - Prob. 73PCh. 15 - Two smooth disks A and B each have a mass of 0.5...Ch. 15 - Prob. 75PCh. 15 - The cue ball A is given an initial velocity (vA)1...Ch. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - A ball of negligible size and mass m is given a...Ch. 15 - Prob. 81PCh. 15 - The 20-lb box slides on the surface for which k =...Ch. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 90PCh. 15 - Prob. 92PCh. 15 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15 - Prob. 19FPCh. 15 - Prob. 20FPCh. 15 - Initially the 5-kg block is moving with a constant...Ch. 15 - Prob. 22FPCh. 15 - Prob. 23FPCh. 15 - Prob. 24FPCh. 15 - Determine the angular momentum HO of the 6-lb...Ch. 15 - Determine the angular momentum HP of the 6-lb...Ch. 15 - Prob. 96PCh. 15 - Determine the angular momentum Hp, of each of the...Ch. 15 - Prob. 98PCh. 15 - Determine the angular momentum Hp of the 3-kg...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - If the rod of negligible mass is subjected to a...Ch. 15 - The amusement park ride consists of a 200-kg car...Ch. 15 - An earth satellite of mass 700 kg is launched into...Ch. 15 - Prob. 115PCh. 15 - Prob. 116PCh. 15 - Prob. 119PCh. 15 - The gauge pressure of water at A is 150.5 kPa....Ch. 15 - Prob. 121PCh. 15 - The fountain shoots water in the direction shown....Ch. 15 - A plow located on the front of a locomotive scoops...Ch. 15 - Prob. 124PCh. 15 - Water is discharged from a nozzle with a velocity...Ch. 15 - Prob. 127PCh. 15 - Prob. 128PCh. 15 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15 - Prob. 133PCh. 15 - A rocket has an empty weight of 500 lb and carries...Ch. 15 - Prob. 135PCh. 15 - Prob. 138PCh. 15 - The missile weighs 40 000 lb. The constant thrust...Ch. 15 - Prob. 140PCh. 15 - Prob. 1RPCh. 15 - Prob. 2RPCh. 15 - Prob. 3RPCh. 15 - Prob. 4RPCh. 15 - The 200-g projectile is fired with a velocity of...Ch. 15 - Block A has a mass of 3 kg and is sliding on a...Ch. 15 - Two smooth billiard balls A and B have an equal...Ch. 15 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The three balls each weigh 0.4 lb and have a coefficient of restitution of e = 0.75. If ball A is released from rest and strikes ball B and then ball B strikes ball C, determine the velocity of each ball after the second collision has occurred. The balls slide without friction. Please explain the stepsarrow_forwardAn engineer is studying the impacts of frontal car collisions on the occupants.If a 1900-lb car with velocity vA = 30 mph collides head on with a 2800-lb car with velocity vb =20 mph, the coefficient of restitution of the impact is e = 0.15, and the duration of the collision is0.22 seconds, then determine the magnitude of the average acceleration to which the occupants ofeach car are subjected. Assume car A and car B are on a flat surface, with car A traveling to theright and car B traveling to the leftarrow_forwardAn engineer is studying the impacts of frontal car collisions on the occupants.If a 1900-lb car with velocity vA = 30 mph collides head on with a 2800-lb car with velocity vB =20 mph, the coefficient of restitution of the impact is e = 0.15, and the duration of the collision is0.22 seconds, then determine the magnitude of the average acceleration to which the occupants ofeach car are subjected. Assume car A and car B are on a flat surface, with car A traveling to theright and car B traveling to the left. answer should be in ft/s^2arrow_forward
- Disk A and B have a mass if 6kg and 4kg respectively. They are sliding down on the smooth hoeizontal plane with the velocities shown. the coefficient of the restitution is 0.6. a. Determine the angle between velocity of A and the line of impact after collision b. Determine the angle between velocity of B and line of impact after collisionarrow_forward2. Disk A has a mass of 350 g and is sliding on a smooth horizontal surface with an initial velocity (VA)I= 4 m/s. It makes a direct collision with disk B, which has a mass of 155 g and is originally at rest. If both disks are of the same size and the coefficient of restitution is 0.70, determine the velocity of each disk just after collision.arrow_forwardThe 0.5-kg cylinder A is released from rest from the position shown and drops a distance h = 0.6 m. It then collides with the 0.4-kg block B, which rests on two massless springs of stiffness k₁ = 50 N/m and k₂ = 100 N/m, that have the same natural length (unstretched length). The coefficient of restitution of the collision is e = 0.8. Neglect all friction and treat both A and B as particles. (a) Show that the initial deformation of each of the two springs is approximately 0.0262 m. (b) Determine the maximum downward displacement of block B from its initial position, after the impact. (c) Determine the energy that is lost in the impact between block A and block B. MA A h MB B wwwwww wwwwwwarrow_forward
- A 100 kg body moves to the right at 5 m/s and another body of mass of W moves to the left at 3 m/s. they meet each other and after impact, the 100 kg body rebounds to the left at 2 m/s. Determine the mass of the other body if the coefficient of restitution is 0.50.arrow_forwardNeed help with this Dyanmics problem, thank you!arrow_forwardThe 6-Mg truck and 3-Mg car are traveling with the free-rolling velocities of 37 km/h and 19 km/h, respectively, just before they collide. After the collision, the car moves with a velocity of 15 km/h to the right relative to the truck. Determine the coefficient of restitution between the truck and car.arrow_forward
- The 9.0 kg sphere A is held at an angle of 60° as shown, and then is released from rest and hits the B sphere which has a mass of 4.5 kg. In this crash the coefficient of restitution is e = 0.75. The sphere B is attached to the end of a rod lightweight rotating around the O point. The spring is initially non elongated and it is known that the maximum angle θ that the rod turned after the crash measured from the initial position was of 21.4º. Calculate: a) The speed with which sphere A impacts with sphere B. b) The magnitude and direction of the velocities of each sphere A and B after impact. c) The mechanical energy dissipated on impact. d) The spring stiffness constant k.arrow_forwardThe 12-1b collar B is at rest, and when it is in the position shown the spring is unstretched. Another 2-1b collar A strikes it so that B slides 4 ft on the smooth rod before momentarily stopping. The coefficient of restitution between A and B is e = 0.4. (Figure 1) Figure k = 20 lb/ft? A B 3 ft Part A Determine the velocity of A just after impact measured to the left. Express your answer to three significant figures and include the appropriate units. Enter positive value if the velocity is directed to the left and negative value if the velocity is directed to the right. (VA)2 = Submit Part B F = Value μA Request Answer μА Determine the average force exerted between A and B during the impact if the impact occurs in 0.004 s. Express your answer to three significant figures and include the appropriate units. Value Units Units ? ?arrow_forwardThe 1-1b ball A is thrown so that when it strikes the 10-1b block B it is traveling horizontally at v = 30 ft/s as shown in (Figure 1). Figure A B 1 of 1 Part A If the coefficient of restitution between A and B is e = 0.6, and the coefficent of kinetic friction between the plane and the block is μ = 0.4, determine the distance block B slides on the plane before stopping. Express your answer in feet to three significant figures. VE ΑΣΦ ↓↑ vec S = Submit Previous Answers Request Answer ? ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY