PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 14FP
To determine
The velocity of each cars
just after collision
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
After years of hard work and research, engineers create the world's safest car and van. To showcase their
capabilities, the engineers setup a head on collision between the vehicles with test dummies inside.
Assuming to the right is positive, the 1400 kg car and 1800 kg van have an initial speed of 10 and
m
S
m
-7- respectively. Determine the velocities of the vehicles after the collision if the coefficient of
S
restitution is e= 0.7.
Ve
V₂
m
S
Do
m
S
The 10-Mg truck and 2-Mg car are traveling with the free-rolling velocities of 50 km/h and 11 km/h, respectively, just before they collide.
After the collision, the car moves with a velocity of 14 km/h to the right relative to the truck. Determine the coefficient of restitution
between the truck and car.
The three balls each weigh 0.4 lb and have a coefficient of restitution of e = 0.75. If ball A is released from rest and strikes ball B and then ball B strikes ball C, determine the velocity of each ball after the second collision has occurred. The balls slide without friction.
Please explain the steps
Chapter 15 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 15 - The 0.5kg ball strikes the rough ground and...Ch. 15 - Prob. 2FPCh. 15 - Prob. 3FPCh. 15 - The wheels of the 1.5-Mg car generate the traction...Ch. 15 - Prob. 5FPCh. 15 - If the coefficient of kinetic friction between the...Ch. 15 - Prob. 3PCh. 15 - Each of the cables can sustain a maximum tension...Ch. 15 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15 - Prob. 8P
Ch. 15 - Prob. 9PCh. 15 - During operation the jack hammer strikes the...Ch. 15 - For a short period of time, the frictional driving...Ch. 15 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15 - Prob. 14PCh. 15 - The towing force acting on the 400-kg safe varies...Ch. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15 - Prob. 23PCh. 15 - The balloon has a total mass of 400 kg including...Ch. 15 - Prob. 26PCh. 15 - Prob. 30PCh. 15 - Prob. 7FPCh. 15 - The cart and package have a mass of 20 kg and 5...Ch. 15 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15 - Prob. 10FPCh. 15 - Prob. 11FPCh. 15 - The cannon and support without a projectile have a...Ch. 15 - The 5-Mg bus B is traveling to the right at 20...Ch. 15 - Prob. 36PCh. 15 - A railroad car having a mass of 15 Mg is coasting...Ch. 15 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15 - Prob. 39PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15 - Block A has a mass of 5 kg and is placed on the...Ch. 15 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15 - Prob. 56PCh. 15 - Prob. 13FPCh. 15 - Prob. 14FPCh. 15 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15 - The ball strikes the smooth wall with a velocity...Ch. 15 - Prob. 17FPCh. 15 - Prob. 18FPCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15 - Prob. 69PCh. 15 - Prob. 73PCh. 15 - Two smooth disks A and B each have a mass of 0.5...Ch. 15 - Prob. 75PCh. 15 - The cue ball A is given an initial velocity (vA)1...Ch. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - A ball of negligible size and mass m is given a...Ch. 15 - Prob. 81PCh. 15 - The 20-lb box slides on the surface for which k =...Ch. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 90PCh. 15 - Prob. 92PCh. 15 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15 - Prob. 19FPCh. 15 - Prob. 20FPCh. 15 - Initially the 5-kg block is moving with a constant...Ch. 15 - Prob. 22FPCh. 15 - Prob. 23FPCh. 15 - Prob. 24FPCh. 15 - Determine the angular momentum HO of the 6-lb...Ch. 15 - Determine the angular momentum HP of the 6-lb...Ch. 15 - Prob. 96PCh. 15 - Determine the angular momentum Hp, of each of the...Ch. 15 - Prob. 98PCh. 15 - Determine the angular momentum Hp of the 3-kg...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - If the rod of negligible mass is subjected to a...Ch. 15 - The amusement park ride consists of a 200-kg car...Ch. 15 - An earth satellite of mass 700 kg is launched into...Ch. 15 - Prob. 115PCh. 15 - Prob. 116PCh. 15 - Prob. 119PCh. 15 - The gauge pressure of water at A is 150.5 kPa....Ch. 15 - Prob. 121PCh. 15 - The fountain shoots water in the direction shown....Ch. 15 - A plow located on the front of a locomotive scoops...Ch. 15 - Prob. 124PCh. 15 - Water is discharged from a nozzle with a velocity...Ch. 15 - Prob. 127PCh. 15 - Prob. 128PCh. 15 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15 - Prob. 133PCh. 15 - A rocket has an empty weight of 500 lb and carries...Ch. 15 - Prob. 135PCh. 15 - Prob. 138PCh. 15 - The missile weighs 40 000 lb. The constant thrust...Ch. 15 - Prob. 140PCh. 15 - Prob. 1RPCh. 15 - Prob. 2RPCh. 15 - Prob. 3RPCh. 15 - Prob. 4RPCh. 15 - The 200-g projectile is fired with a velocity of...Ch. 15 - Block A has a mass of 3 kg and is sliding on a...Ch. 15 - Two smooth billiard balls A and B have an equal...Ch. 15 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- t Collar A (30 kg) and collar 8 (18 kg) slide along the smooth rod with the given velocities when they collide with each other. If the coefficient of restitution between the two collars is e0.75, determine the velocities of collar A and collar 8 after the collision using conservation of momentum and the coefficient of restitution. 5 m/s 10 m/sarrow_forwardAn engineer is studying the impacts of frontal car collisions on the occupants.If a 1900-lb car with velocity vA = 30 mph collides head on with a 2800-lb car with velocity vb =20 mph, the coefficient of restitution of the impact is e = 0.15, then determine the velocities ofeach car after the collision. Assume car A and car B are on a flat surface, with car A traveling tothe right and car B traveling to the left.arrow_forwardWhen the rope is at an angle of a= 30°, the 1-kg sphere A has a speed v0 = 0.6 m/s. The coefficient of restitution between A and the 2-kg wedge B is 0.8 and the length of rope I = 0.9 m. The spring constant has a value of 1500 N/m and 0= 20°. Determine (a) the velocities of A and B immediately after the impact, (b) the maximum deflection of the spring, assuming A does not strike B again before this point.arrow_forward
- Block A of mass 5kg is moving with a velocity 5m/s. it then hit block B of mass 2kg moving at a rate of 2m/s moving in the same direction. If the coefficient of restitution between A and B is 0.2, determine the initial and final velocities of the blocksarrow_forwardThe pool ball A travels with a velocity of 7 m/s just before it strikes ball B, which is at rest. If the masses of A and B are each 275 g, and the coefficient of restitution between them is e = 1, determine the velocity of ball B just after impact. B 30°arrow_forwardAfter years of hard work and research, engineers create the world's safest car and van. To showcase their capabilities, the engineers setup a head on collision between the vehicles with test dummies inside. Assuming to the right is positive, the 1400 kg car and 1800 kg van have an initial speed of 10 and m m s -7- respectively. Determine the velocities of the vehicles after the collision if the coefficient of S restitution is e 0.7. Vc 50.05 V-38.15 X X m s E|-arrow_forward
- 4. The 12-kg package A has a speed of 2.5 m/s when it enters the smooth ramp. As it slides down the ramp, it strikes the 34-kg package B which is initially at rest. If the coefficient of restitution between A and Bis = 0.65, determine the velocity of B just after the impact.arrow_forwardQ2) The 15-Mg tank car A and 25-Mg freight car B travel toward each other with the velocities shown. If the coefficient of restitution between the bumpers is e = 0.6, determine the velocity of each car just after the collision. 5 m/s 7m/s Aarrow_forwardA 100 kg body moves to the right at 5 m/s and another body of mass of W moves to the left at 3 m/s. they meet each other and after impact, the 100 kg body rebounds to the left at 2 m/s. Determine the mass of the other body if the coefficient of restitution is 0.50.arrow_forward
- An engineer is studying the impacts of frontal car collisions on the occupants.If a 1900-lb car with velocity vA = 30 mph collides head on with a 2800-lb car with velocity vB =20 mph, the coefficient of restitution of the impact is e = 0.15, and the duration of the collision is0.22 seconds, then determine the magnitude of the average acceleration to which the occupants ofeach car are subjected. Assume car A and car B are on a flat surface, with car A traveling to theright and car B traveling to the left. answer should be in ft/s^2arrow_forwardAn engineer is studying the impacts of frontal car collisions on the occupants.If a 1900-lb car with velocity vA = 30 mph collides head on with a 2800-lb car with velocity vb =20 mph, the coefficient of restitution of the impact is e = 0.15, and the duration of the collision is0.22 seconds, then determine the magnitude of the average acceleration to which the occupants ofeach car are subjected. Assume car A and car B are on a flat surface, with car A traveling to theright and car B traveling to the leftarrow_forwardTwo smooth spheres A and B have velocities vA = (-4.5i) m/s and vB = (5.1i) m/s just before they collide. If they have the same mass, determine the speed of A just after impact. During the impact, the virtual line passing through the centers of the spheres makes an angle of θ = 60o with the negative y-axis and the coefficient of restitution is e = 0.67.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY