PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 58P
To determine
The velocity of each disk after collision and show that the kinetic energy of the disks before and after collision is same:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the velocity of the disk A just after collision.
Express your answer to three significant figures and include the appropriate units.
Help me
The 2.5-kg collar is released from rest at A and slides down the inclined foxed rod in the vertical plane. The coefficient of kinetic friction
is 0.61. Calculate (a) the velocity v of the collar as it strikes the spring and (b) the maximum deflection of the spring
2.5 kg
-0.61
Answers:
65 9-
65
0.62 m
k-1.4 kN/m
m/
Chapter 15 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 15 - The 0.5kg ball strikes the rough ground and...Ch. 15 - Prob. 2FPCh. 15 - Prob. 3FPCh. 15 - The wheels of the 1.5-Mg car generate the traction...Ch. 15 - Prob. 5FPCh. 15 - If the coefficient of kinetic friction between the...Ch. 15 - Prob. 3PCh. 15 - Each of the cables can sustain a maximum tension...Ch. 15 - Crates A and B weigh 100 lb and 50 lb,...Ch. 15 - Prob. 8P
Ch. 15 - Prob. 9PCh. 15 - During operation the jack hammer strikes the...Ch. 15 - For a short period of time, the frictional driving...Ch. 15 - The 2.5-Mg van is traveling with a speed of 100...Ch. 15 - Prob. 14PCh. 15 - The towing force acting on the 400-kg safe varies...Ch. 15 - Prob. 18PCh. 15 - Prob. 19PCh. 15 - If it takes 35 s for the 50-Mg tugboat to increase...Ch. 15 - Prob. 23PCh. 15 - The balloon has a total mass of 400 kg including...Ch. 15 - Prob. 26PCh. 15 - Prob. 30PCh. 15 - Prob. 7FPCh. 15 - The cart and package have a mass of 20 kg and 5...Ch. 15 - The 5-kg block A has an initial speed of 5 m/s as...Ch. 15 - Prob. 10FPCh. 15 - Prob. 11FPCh. 15 - The cannon and support without a projectile have a...Ch. 15 - The 5-Mg bus B is traveling to the right at 20...Ch. 15 - Prob. 36PCh. 15 - A railroad car having a mass of 15 Mg is coasting...Ch. 15 - A ballistic pendulum consists of a 4-kg wooden...Ch. 15 - Prob. 39PCh. 15 - Prob. 43PCh. 15 - Prob. 44PCh. 15 - Prob. 45PCh. 15 - The 30-Mg freight car A and 15-Mg freight car B...Ch. 15 - Blocks A and B have masses of 40 kg and 60 kg,...Ch. 15 - Block A has a mass of 5 kg and is placed on the...Ch. 15 - Solve Prob. 15-53 if the coefficient of kinetic...Ch. 15 - Prob. 56PCh. 15 - Prob. 13FPCh. 15 - Prob. 14FPCh. 15 - The 30-lb package A has a speed of 5 ft/s when it...Ch. 15 - The ball strikes the smooth wall with a velocity...Ch. 15 - Prob. 17FPCh. 15 - Prob. 18FPCh. 15 - Prob. 58PCh. 15 - Prob. 59PCh. 15 - Prob. 61PCh. 15 - Prob. 62PCh. 15 - Prob. 63PCh. 15 - Prob. 64PCh. 15 - A 1-lb ball A is traveling horizontally at 20 ft/s...Ch. 15 - Prob. 69PCh. 15 - Prob. 73PCh. 15 - Two smooth disks A and B each have a mass of 0.5...Ch. 15 - Prob. 75PCh. 15 - The cue ball A is given an initial velocity (vA)1...Ch. 15 - Prob. 78PCh. 15 - Prob. 79PCh. 15 - A ball of negligible size and mass m is given a...Ch. 15 - Prob. 81PCh. 15 - The 20-lb box slides on the surface for which k =...Ch. 15 - Prob. 84PCh. 15 - Prob. 85PCh. 15 - Prob. 90PCh. 15 - Prob. 92PCh. 15 - Disks A and B have a mass of 15 kg and 10 kg,...Ch. 15 - Prob. 19FPCh. 15 - Prob. 20FPCh. 15 - Initially the 5-kg block is moving with a constant...Ch. 15 - Prob. 22FPCh. 15 - Prob. 23FPCh. 15 - Prob. 24FPCh. 15 - Determine the angular momentum HO of the 6-lb...Ch. 15 - Determine the angular momentum HP of the 6-lb...Ch. 15 - Prob. 96PCh. 15 - Determine the angular momentum Hp, of each of the...Ch. 15 - Prob. 98PCh. 15 - Determine the angular momentum Hp of the 3-kg...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - The 800-lb roller-coaster car starts from rest on...Ch. 15 - If the rod of negligible mass is subjected to a...Ch. 15 - The amusement park ride consists of a 200-kg car...Ch. 15 - An earth satellite of mass 700 kg is launched into...Ch. 15 - Prob. 115PCh. 15 - Prob. 116PCh. 15 - Prob. 119PCh. 15 - The gauge pressure of water at A is 150.5 kPa....Ch. 15 - Prob. 121PCh. 15 - The fountain shoots water in the direction shown....Ch. 15 - A plow located on the front of a locomotive scoops...Ch. 15 - Prob. 124PCh. 15 - Water is discharged from a nozzle with a velocity...Ch. 15 - Prob. 127PCh. 15 - Prob. 128PCh. 15 - Sand drops onto the 2-Mg empty rail car at 50 kg/s...Ch. 15 - Prob. 133PCh. 15 - A rocket has an empty weight of 500 lb and carries...Ch. 15 - Prob. 135PCh. 15 - Prob. 138PCh. 15 - The missile weighs 40 000 lb. The constant thrust...Ch. 15 - Prob. 140PCh. 15 - Prob. 1RPCh. 15 - Prob. 2RPCh. 15 - Prob. 3RPCh. 15 - Prob. 4RPCh. 15 - The 200-g projectile is fired with a velocity of...Ch. 15 - Block A has a mass of 3 kg and is sliding on a...Ch. 15 - Two smooth billiard balls A and B have an equal...Ch. 15 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- M6arrow_forward2. Disk A has a mass of 350 g and is sliding on a smooth horizontal surface with an initial velocity (VA)I= 4 m/s. It makes a direct collision with disk B, which has a mass of 155 g and is originally at rest. If both disks are of the same size and the coefficient of restitution is 0.70, determine the velocity of each disk just after collision.arrow_forwardThe 4-kg bar is released from rest in the horizontal position 1 and falls to position 2. The unstretched length of the spring is 0.4 m and the spring constant is k = 20 N/m. What is the magnitude of the bar's angular velocity when it is in position 2. 0.6 m- wwwww 1 m 60⁰° Aarrow_forward
- Just before traveling horizontally to the right at 50.0 m/s; when it leaves the bat, the ball is traveling to the left at an angle of 30 above horizontal with a speed of 52.0 m/s. The ball and bat are in contact for 1.85 ms. A bat strikes a 0.145 kg baseball. impact, the ball isarrow_forwardTwo discs of same size and mass are B colliding on a frictionless Air-Hockey table. Disc A is sliding towards disk B (at rest) on their tangent as shown. Determine the velocity of disc B after the impact and the energy lost in the collision, if the A coefficient of restitution is e. Solve the problem algebraically first, then solve it for v = 1m/s and e=0.85arrow_forwardThe 3.6-kg collar is released from rest at A and slides down the inclined fixed rod in the vertical plane. The coefficient of kinetic friction is 0.57. Calculate (a) the velocity v of the collar as it strikes the spring and (b) the maximum deflection x of the spring. 3.6 kg H=0.57 Answers: A (a) V= 63 0.67 m i 3.28 (b) x= i 105 k = 3.7 kN/m m/s mmarrow_forward
- Disk A has a mass of 300 g and is sliding on a smooth horizontal surface with an initial velocity (VA)1 = 5 m/s. It makes a direct collision with disk B, which has a mass of 175 g and is originally at rest. Both disks are of the same size and the collision is perfectly elastic (e = 1). Part A Determine the velocity of the disk A just after collision. Express your answer to three significant figures and include the appropriate units. (VA)2 = Submit Part B uA Value Request Answer Units Pearson ? Determine the velocity of the disk B just after collision. Express your answer to three significant figures and include the appropriate units. ?arrow_forwardThe 3.0-kg collar is released from rest at A and slides down the inclined fixed rod in the vertical plane. The coefficient of kinetic friction is 0.38. Calculate (a) the velocity v of the collar as it strikes the spring and (b) the maximum deflection x of the spring. 3.0 kg H=0.38 Answers: (a) V = A (b) x = 56° HI 0.45 m k = 3.7 kN/m m/s mmarrow_forwardThe platform swing consists of a 190-lb flat plate suspended by four rods of negligible weight. When the swing is at rest, the 170-lb man jumps off the platform when his center of gravity G is 10 ft from the pin at A. This is done with a horizontal velocity of 5 ft/s, measured relative to the swing at the level of G. (Eigure 1) Figure 1 of 1 10 ft 11 ft 4 ftarrow_forward
- The parabolic guide wire shown below is smooth and lies in a vertical plane. A 0.6 kg mass slider is released from rest at point A. The spring has an unstretched length of 200 mm and a spring constant of 120 N/m. Determine the speed of the slider when it reaches point B and the force exerted by the wire. 0.5 m 0.5 m A 0.6 kg 120 N/m 0.25 m 0.25 m Parabolic Вarrow_forwardA 10 kg collar C fits loosely on the smooth shaft. If the attached spring is unstretched when collar C is at s = 0 cm and is given an initial velocity of 5 m/s, determine the velocity when the collar C is at s = 500 cm. Included a free-body and a kinetic diagram of the collar at s = 500 cm Vi to S IC www k= 20 N/m 750 cmarrow_forward1. A wood block of mass mw = 200 g is projected from the ground at a speed vo= 35 m/s and at an angle 0o = 50°. When at height h = 24 m the wood block was hit by a bullet of mass mb = 25 g which was moving at vb= 220 m/s and at an angle Ob = 70°. After the collision, the bullet embedded itself in the block and move together and land at point A on the ground. Then they move on the ground that has coefficient of kinetic friction uk = 0.5 and start to compress a horizontal spring at point B. The distance between point A and B is 18 m and the spring constant k = 3×10² N/m. Right end of the spring is fixed, and all motions are confined in x-y plane. Wood block + Bullet Bullet Wood A B block (a) Was the collision between the wood block and the bullet elastic or inelastic? Explain quantitively. (b) Find the maximum height from the ground the block with the bullet reached. (c) How far is point A from the launch point of the wood block? (d) Calculate the velocity at which the block-bullet…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY