Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.39P
For Problems 15.31 through 15.43, use the moment-area method.
15.39 For the steel beam shown, calculate the slope at the free end and the maximum deflection. Note the varying moment of inertia.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(use EI constant for whole span). A 10-meter-span, propped beam (fixed at the left support and roller at right support), with a uniformly distributed load from left support to six meters to the right, with a magnitude of six kilonewton per lineal meter, a downward concentrated load at the midspan. Solve the reactions at the fixed support and roller support, slope and deflection at the roller support, using Area Moment Method. Use the concentrated load as 24 kN.
Calculate the slope at C using ONE of these methods: double integration method, area-moment and conjugate beam method. Also,
determine the deflection at C using EITHER virtual work method or Castigliano theorem method. Set P = 10 kN, w = 2 kN/m, support
A is pin and support B is roller.
...
1 m
A cantilever beam shown carries a concentrated load of 20 kN at point C. Assume constant value of E.
Compute the deflection at C.
Compute the slope at C.
Compute the deflection at B.
Chapter 15 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 15 - A 14 in.-diameter aluminum rod is bent into a...Ch. 15 - 15.2 Calculate the maximum bending stress produced...Ch. 15 - A 500 -mm-long steel bar having a cross section of...Ch. 15 - 15.4 An aluminum wire has a diameter of in....Ch. 15 - 15.5 A -in.-wide by in.-thick board is bent to a...Ch. 15 - 15.6 A Douglas fir beam is in. wide and in. deep....Ch. 15 - Prob. 15.7PCh. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...
Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.I4, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - 15.27 Draw the moment diagram by parts for the...Ch. 15 - 15.28 Draw the moment diagram by parts for the...Ch. 15 - 15.29 Draw the moment diagram by parts for the...Ch. 15 - 15.30 For the beam shown, draw the conventional...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - 15.49 If the elastic limit of a steel wire is...Ch. 15 - 15.50 Calculate the bending moment required to...Ch. 15 - 15.51 A 6-ft-long cantilever beam is subjected to...Ch. 15 - 15.52 A structural steel wide-flange section is...Ch. 15 - 15.53 A simply supported structural steel...Ch. 15 - 15.54 A structural steel wide-flange shape is...Ch. 15 - A solid, round simply supported steel shaft is...Ch. 15 - Using the moment-area method, check the...Ch. 15 - 15.57 A 1-in.-diameter steel bar is 25 ft long and...Ch. 15 - 15.58 A 102-mm nominal diameter standard-weight...Ch. 15 - I 5.59 Compute the maximum deflection for the...Ch. 15 - An 8-in-wide by 12-in-deep redwood timber beam...Ch. 15 - 15.61 A solid steel shaft 3 in. in diameter and 20...Ch. 15 - 15.62 For the beam shown, draw the conventional...Ch. 15 - 15.63 Rework Problem 15.62 with concentrated loads...Ch. 15 - 15.64 A solid steel shaft 3 in. in diameter and 20...Ch. 15 - 15.65 A structural steel wide-flange section is...Ch. 15 - 15.66 A 6-in.-by-10-in, hem-fir timber beam (S4S)...Ch. 15 - 15.67 A simply supported structural steel...Ch. 15 - Calculate the maximum permissible span length for...Ch. 15 - 15.69 A structural steel wide-flange section 10 ft...Ch. 15 - 15.70 A structural steel wide-flange section...Ch. 15 - 15.71 Determine the deflection at point C and...Ch. 15 - 15.72 Calculate the deflection midway between the...Ch. 15 - 15.73 Derive an expression for the maximum...Ch. 15 - 15.74 Derive an expression for the maximum...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The cantilever beam is loaded as shown below by a concentrated force ‘P’ and a moment, ‘Mo’. Use the method of superposition to calculate the vertical deflection at the free end due to this loading. Note that ‘A’ the cross-sectional area of the beam, and ‘I’ is the moment of inertia of the cross-section around the bending axis and ‘E’ is the modulus of elasticity of the beam.arrow_forwardGiven the Cantilever beam loaded as shown, determine the deflection of the beam at the right end by using Three Moment Equation (TME). Note: The unit obtained from TME for EIy is kips-ft^3.arrow_forwardA manufacturer wants to design a hydraulic floor crane that can lift an engine with a maximum weight of 5300 N. Two choices are considered for the beam ABC, a T‐beam and a C‐beam, as shown below. The beam has a uniform weight distribution (Ps 8000 kg/m3) Question: Calculate the area moment of inertia for each cross‐section.( for the T and C beam) note: you might have to do the parallel axis theorem to solve. And the 70mm on the top of the C beam is supposed to got to the end of the top part of the C beam and not stop at the y prime axis(the whole to of the C beam is 100mm)arrow_forward
- Refer to the previous problem. Calculate the resulting maximum positive moment (kN-m). O 77.4 O 96.8 O 54.4 O 108.8 SITUATION. A simply supported beam has a span of 12 m. It carries a total uniformly distributed load of 21.5 kN/m. To prevent excessive deflection, a support is added at midspan. Calculate the reaction (kN) at the added support. O 96.75 O 161.25 80.62 O 48.38 PLS ANSWER ASAP THANKSarrow_forwardProblem 8. Use moment-area method to solve the question.arrow_forwardUsing Double Integration Methodarrow_forward
- A simple uniformly distributed 20 ft. beam carrying a load of 1000 lb./ft. is simply supported at both ends. Calculate the maximum deflection of the beam having a modulus of elasticity of 29 x 100 psi, and moment inertia of 250 in". A. 0.208 in. C. 0.67 in. B. 0.496 in. D. 1.220 in.arrow_forwardCompute the initial deflection of the beam at midspan under service loads with the following specifications: f'c = 4000 psi, 36-inch height, depth of rebar assumed to be 3 inches less than the height, 16-inch width, 4 #9 bars (tension), Grade 60 rebar, 30' clear spans, service loads of: DL = 0.25k/ft, LL = 1.2k/ft. The DL does NOT include self-weight of the beam or of the precast concrete deck planks that have a weight of 60 PSF. The beam picks up a tributary width of 12 feet. Also, note that this beam is continuous and is the middle beam of 5 equal spans. Check the initial deflections against the ACI deflection requirements. Then calculate the long-term deflections and check those against the ACI requirements. For both situations, assume that finish materials will be attached to the beam. Last: Instead of performing a structural analysis to determine the maximum deflection in the beam, conservatively figure that the maximum deflection will be 60% of what it would have been for a…arrow_forwardFor the prismatic beam and load shown in fig. determine the slope and deflection at point Darrow_forward
- For the cantilever beam shown, calculate the deflections δB at point B, due to the simultaneous action of themoment M0 and the load P. Use superposition principle.arrow_forwardFor the beam and loading shown, use discontinuity functions to compute: (a) the deflection VA of the beam at A, and (b) the deflection Vmidspan of the beam at midspan (i.e., x = 2.45 m). Assume a constant value of El = 1270 kN-m² for the beam; M₁ = 9 kN-m, wo = 19.8 kN/m, LAB = 1.1 m, LBc = 2.7 m. MA A Answer: (a) VA = (b) Vmid i LAB i Wo B LBC mm. mm.arrow_forwardPlease answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY