Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.10P
For Problems 15.7 through 15.14, use the formula method.
15.10 Compute the maximum deflection for the beam of Problem 15.9 if the loading consists of one concentrated load of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the slope at C using ONE of these methods: double integration method, area-moment and conjugate beam method. Also,
determine the deflection at C using EITHER virtual work method or Castigliano theorem method. Set P = 10 kN, w = 2 kN/m, support
A is pin and support B is roller.
...
1 m
A cantilever beam shown carries a concentrated load of 20 kN at point C. Assume constant value of E.
Compute the deflection at C.
Compute the slope at C.
Compute the deflection at B.
Calculate the deflection at midspan for the
beam in Figure 15.250. The beam is a 4-in.
nominal diameter standard-weight steel pipe.
Neglect the weight of the beam.
Chapter 15 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 15 - A 14 in.-diameter aluminum rod is bent into a...Ch. 15 - 15.2 Calculate the maximum bending stress produced...Ch. 15 - A 500 -mm-long steel bar having a cross section of...Ch. 15 - 15.4 An aluminum wire has a diameter of in....Ch. 15 - 15.5 A -in.-wide by in.-thick board is bent to a...Ch. 15 - 15.6 A Douglas fir beam is in. wide and in. deep....Ch. 15 - Prob. 15.7PCh. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...
Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.I4, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.7 through 15.14, use the formula...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - For Problems 15.15 through 15.26, use the...Ch. 15 - 15.27 Draw the moment diagram by parts for the...Ch. 15 - 15.28 Draw the moment diagram by parts for the...Ch. 15 - 15.29 Draw the moment diagram by parts for the...Ch. 15 - 15.30 For the beam shown, draw the conventional...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - For Problems 15.31 through 15.43, use the...Ch. 15 - 15.49 If the elastic limit of a steel wire is...Ch. 15 - 15.50 Calculate the bending moment required to...Ch. 15 - 15.51 A 6-ft-long cantilever beam is subjected to...Ch. 15 - 15.52 A structural steel wide-flange section is...Ch. 15 - 15.53 A simply supported structural steel...Ch. 15 - 15.54 A structural steel wide-flange shape is...Ch. 15 - A solid, round simply supported steel shaft is...Ch. 15 - Using the moment-area method, check the...Ch. 15 - 15.57 A 1-in.-diameter steel bar is 25 ft long and...Ch. 15 - 15.58 A 102-mm nominal diameter standard-weight...Ch. 15 - I 5.59 Compute the maximum deflection for the...Ch. 15 - An 8-in-wide by 12-in-deep redwood timber beam...Ch. 15 - 15.61 A solid steel shaft 3 in. in diameter and 20...Ch. 15 - 15.62 For the beam shown, draw the conventional...Ch. 15 - 15.63 Rework Problem 15.62 with concentrated loads...Ch. 15 - 15.64 A solid steel shaft 3 in. in diameter and 20...Ch. 15 - 15.65 A structural steel wide-flange section is...Ch. 15 - 15.66 A 6-in.-by-10-in, hem-fir timber beam (S4S)...Ch. 15 - 15.67 A simply supported structural steel...Ch. 15 - Calculate the maximum permissible span length for...Ch. 15 - 15.69 A structural steel wide-flange section 10 ft...Ch. 15 - 15.70 A structural steel wide-flange section...Ch. 15 - 15.71 Determine the deflection at point C and...Ch. 15 - 15.72 Calculate the deflection midway between the...Ch. 15 - 15.73 Derive an expression for the maximum...Ch. 15 - 15.74 Derive an expression for the maximum...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Figure 14.20 Full Alternative Text 14.21 A solid rectangular simply supported timber beam 6 in. wide, 20 in. deep, and 10 ft long carries a concentrated load of 16,000 lb at midspan. Use nominal dimensions. a. Compute the maximum horizontal shear stress at the neutral axis. b. Compute the shear stress 4 in. and 8 in. above and below the neutral axis. Neglect the weight of the beam.arrow_forward14.12 The cantilevered beam shown in then accompanying figure is used to support a load acting on a balcony. The deflection of the centerline of the beam is given by the following equation: -wx? y=. (x²-4Lx+6L) 24EI where (o y = deflection at a given x location (m) distributed load (N/m) W = gle E = modulus of elasticity (N/m²) I = second moment of area (m*) x = distance from the support as shown (x) ded nd L = length of the beam (m) ween e air Problem 14.12 ELA maldov or Using Excel, plot the deflection of a beam whose length is 5 m with the modulus of elasticity of E =200 GPa and I= 99.1×10° mmª. The beam is designed to carry a load of 10,000 N/m. What is the maximum deflection of the beam? how a the car ermine e air resis-arrow_forwardFor the beam and loading shown, use discontinuity functions to compute: (a) the deflection VA of the beam at A, and (b) the deflection Vmidspan of the beam at midspan (i.e., x = 2.45 m). Assume a constant value of El = 1270 kN-m² for the beam; M₁ = 9 kN-m, wo = 19.8 kN/m, LAB = 1.1 m, LBc = 2.7 m. MA A Answer: (a) VA = (b) Vmid i LAB i Wo B LBC mm. mm.arrow_forward
- solve please..arrow_forwardNote:- • Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. • Answer completely. • You will get up vote for sure.arrow_forwardA simply supported beam 10 m long has an overhang of 1.1 m at the left support. If a highway uniform load of 12.02 kN/m and a concentrated load of 194 kN, passes thru the beam, compute the maximum positive shear (kN) based on influence line for maximum shear at mid span.arrow_forward
- 3. Calculate the slope and deflection at the 60-kNm couple on the structure shown in the accompanying illustration. Use: a. Moment Area Method, b. Conjugate Beam Method 4 kN/m Fixed Hinge 60 kNm 5 m -5 m 5 m -5m I=1.46 x 10° mm". E=200000MPa Activate Windows so to Settings to activate W ndows.arrow_forwardGive the required I, for a simply supported beam 20' long with a uniformly distributed total service load of 800 plf throughout the full length of the beam. Assume A992 steel and a W-flange member. 0.69 inª 96.00 in O 690.00 in 960.00 inarrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY