Concept explainers
Threshold of Pain. You are investigating the report of a UFO landing in an isolated portion of New Mexico, and you encounter a strange object that is
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
Chapter 15 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Introduction to Electrodynamics
Tutorials in Introductory Physics
Life in the Universe (4th Edition)
Modern Physics
Lecture- Tutorials for Introductory Astronomy
Essential University Physics: Volume 1 (3rd Edition)
- A siren emits a sound of frequency 1.44103 Hz when it is stationary with respect to an observer. The siren is moving away from a person and toward a cliff at a speed of 15 m/s. Both the cliff and the observer are at rest. Assume the speed of sound in air is 343 m/s. What is the frequency of the sound that the person will hear a. coming directly from the siren and b. reflected from the cliff?arrow_forwardA sound wave can be characterized as (a) a transverse wave, (b) a longitudinal wave, (c) a transverse wave or a longitudinal wave, depending on the nature of its source, (d) one that carries no energy, or (e) a wave that does not require a medium to be transmitted from one place to the other.arrow_forwardA sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forward
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA careless child accidentally drops a tuning fork vibrating at 450 Hz from a window of a high-rise building. How far below the window is the tuning fork when the child hears sound waves with frequency 425 Hz? Remember to account for the time required for the sound to reach the child.arrow_forward(a) At an air show a jet flies directly toward the stands at a speed of 1200 km/h, emitting a frequency of 3500 Hz, on a day when the speed of sound is 342 m/s. What frequency is received by the observers? (b) What frequency do they receive as the plane flies directly away from them?arrow_forward
- A tuning fork is known to vibrate with frequency 262 Hz. When it is sounded along with a mandolin siring, four beats are heard every second. Next, a bit of tape is put onto each line of the tuning fork, and the tuning fork now produces five beats per second with the same mandolin siring. What is the frequency of the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz (e) 267 Hzarrow_forwardA block of mass m = 5.00 kg is suspended from a wire that passes over a pulley and is attached to a wall (Fig. P17.71). Traveling waves are observed to have a speed of 33.0 m/s on the wire. a. What is the mass per unit length of the wire? b. What would the speed of waves on the wire be if the suspended mass were decreased to 2.50 kg? FIGURE P17.71arrow_forwardDuring a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forward
- At t = 0, a transverse pulse in a wire is described by the function y=6.00x2+3.00 where xand y are in meters. If the pulse is traveling in the positive x direction with a speed of 4.50 m/s, write the function y(x, t) that describes this pulse.arrow_forwardUltrasound is absorbed in the body; this complicates the use of ultrasound to image tissues. The intensity of a beam of ultrasound decreases by a factor of 2 after traveling a distance of 40 wavelengths. Each additional travel of 40 wavelengths results in a decrease by another factor of 2. A beam of 1.0 MHz ultrasound begins with an intensity of 1000 W/m2. After traveling 12 cm through tissue with no significant reflection, the intensity is aboutA. 750 W/m2 B. 500 W/m2C. 250 W/m2 D. 125 W/m2arrow_forwardWhile driving down the road, you spot a friend standing on the sidewalk. You honk your horn at them while driving 60 km/h. Your horn emits a frequency of 330 Hz. V sound = : 343 m/s a. What frequency does your friend hear as you approach? 347 Hz b. What frequency does your friend hear after you pass by? 315 Hzarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College