A horizontal wire is tied to supports at each end and vibrates in its second-overtone standing wave. The tension in the wire is 5.00 N, and the node-to-node distance in the standing wave is 6.28 cm. (a) What is the length of the wire? (b) A point at an anti-node of the standing wave on the wire travels from its maximum upward displacement to its maximum downward displacement in 8.40 ms. What is the wire’s mass?
A horizontal wire is tied to supports at each end and vibrates in its second-overtone standing wave. The tension in the wire is 5.00 N, and the node-to-node distance in the standing wave is 6.28 cm. (a) What is the length of the wire? (b) A point at an anti-node of the standing wave on the wire travels from its maximum upward displacement to its maximum downward displacement in 8.40 ms. What is the wire’s mass?
A horizontal wire is tied to supports at each end and vibrates in its second-overtone standing wave. The tension in the wire is 5.00 N, and the node-to-node distance in the standing wave is 6.28 cm. (a) What is the length of the wire? (b) A point at an anti-node of the standing wave on the wire travels from its maximum upward displacement to its maximum downward displacement in 8.40 ms. What is the wire’s mass?
A horizontal wire is tied to supports at each end and vibrates in its second-overtone standing wave. The tension in the wire is 5.00 N, and the node-to-node distance in the standing wave is 6.28 cm. (a) What is the length of the wire? (b) A point at an antinode of the standing wave on the wire travels from its maximum upward displacement to its maximum downward displacement in 8.40 ms. What is the wire’s mass?
Standing waves are produced on a string that is held fixed at both ends. The tension in the string is kept constant. (a) For the second overtone standing wave the node-to-node distance is 8.00 cm. What is the length of the string? (b) What is the node-to-node distance for the fourth harmonic standing wave?
A string is connected to an oscillator and then laid horizontally, with the other end draped over a pulley and a mass of 200g is hung from that end. The string is found to have a mass of 15g and a length of 1.2m. The oscillator is turned on and the frequency is tuned until a standing wave is seen. You see 6 full wavelengths along the 1.2m length of the string. The oscillator frequency is set to 63Hz.
What is the speed of the wave on the string based on your measurements?
Give your answer in m/s and to 1 decimal place.
Chapter 15 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.