University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 15.43E
To determine
The wavelength in first three harmonics and the diagram of vibrating stick in first three harmonics.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 7.0 m rope allows waves to travel through it at a speed of 19 m/s. When vibrated
at a certain frequency, the rope produces a standing wave pattern with 5 nodes.
BLANK 1: Draw this wave pattern (dropbox) AND determine its wavelength.
BLANK 2: Calculate the frequency of vibration.
There is a long steel wire of length 2.7 m where its upper end is attached to the ceiling. At the other end, a 56.2 kg object is
suspended. It is observed that it takes a transverse pulse 0.0345 s to travel from the bottom to the top of the wire. What is the mass
of the wire?
NOTE: Final answer in THREE decimal places. Include the unit.
Round your answer to 3 decimal places.
A wave is modeled by the wave function:
y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)]
1. Find the wavelength, wave number, wave velocity, period and wave frequency.
2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s and the amplitude is A= 1.3m
3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically.
4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results? Justify your answer. Is the material transported long wave displacement? If yes, how much material is transported over time interval from t = 0 to t = 5 s? Comment on your answer. We now consider two sound waves with different frequencies which have to the same amplitude. The wave functions of these waves are as follows:
y1 (t) = A sin (2πf1t)
y2 (t) = A sin (2πf2t)
5. Find the resultant wave function analytically.
6. Study how the resulting wave…
Chapter 15 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 15.1 - What type of wave is the wave shown in Fig. 15.2?...Ch. 15.2 - If you double the wavelength of a wave on a...Ch. 15.3 - Figure 15.8 shows a sinusoidal wave of period T on...Ch. 15.4 - The six strings of a guitar are the same length...Ch. 15.5 - Four identical strings each carry a sinusoidal...Ch. 15.6 - Figure 15.22 shows two wave pulses with different...Ch. 15.7 - Suppose the frequency of the standing wave in...Ch. 15.8 - Prob. 15.8TYUCh. 15 - Two waves travel on the same string. Is it...Ch. 15 - Under a tension F, it takes 2.00 s for a pulse to...
Ch. 15 - What kinds of energy are associated with waves on...Ch. 15 - The amplitude of a wave decreases gradually as the...Ch. 15 - Prob. 15.5DQCh. 15 - The speed of ocean waves depends on the depth of...Ch. 15 - Is it possible to have a longitudinal wave on a...Ch. 15 - For transverse waves on a string, is the wave...Ch. 15 - The four strings on a violin have different...Ch. 15 - Prob. 15.10DQCh. 15 - Prob. 15.11DQCh. 15 - Prob. 15.12DQCh. 15 - In a transverse wave on a string, the motion of...Ch. 15 - Energy can be transferred along a string by wave...Ch. 15 - Prob. 15.15DQCh. 15 - If you stretch a rubber band and pluck it, you...Ch. 15 - A musical interval of an octave corresponds to a...Ch. 15 - By touching a string lightly at its center while...Ch. 15 - Prob. 15.19DQCh. 15 - Violins are short instruments, while cellos and...Ch. 15 - What is the purpose of the frets on a guitar? In...Ch. 15 - The speed of sound in air at 20C is 344 m/s. (a)...Ch. 15 - BIO Audible Sound. Provided the amplitude is...Ch. 15 - Prob. 15.3ECh. 15 - BIO Ultrasound Imaging. Sound having frequencies...Ch. 15 - Prob. 15.5ECh. 15 - A fisherman notices that his boat is moving up and...Ch. 15 - Transverse waves on a siring have wave speed 8.00...Ch. 15 - Prob. 15.8ECh. 15 - Prob. 15.9ECh. 15 - A water wave traveling in a straight line on a...Ch. 15 - A sinusoidal wave is propagating along a stretched...Ch. 15 - CALC Speed of Propagation vs. Particle Speed. (a)...Ch. 15 - A transverse wave on a string has amplitude 0.300...Ch. 15 - Prob. 15.14ECh. 15 - One end of a horizontal rope is attached to a...Ch. 15 - With what tension must a rope with length 2.50 m...Ch. 15 - Prob. 15.17ECh. 15 - A 1.50-m string of weight 0.0125 N is tied to the...Ch. 15 - A thin, 75.0-cm wire has a mass of 16.5 g. One end...Ch. 15 - A heavy rope 6.00 m long and weighing 29.4 N is...Ch. 15 - A simple harmonic oscillator at the point x = 0...Ch. 15 - A piano wire with mass 3.00 g and length 80.0 cm...Ch. 15 - Prob. 15.23ECh. 15 - Prob. 15.24ECh. 15 - A jet plane at takeoff can produce sound of...Ch. 15 - Threshold of Pain. You are investigating the...Ch. 15 - Energy Output. By measurement you determine that...Ch. 15 - A fellow student with a mathematical bent tells...Ch. 15 - At a distance of 7.00 1012 m from a star, the...Ch. 15 - Reflection. A wave pulse on a siring has the...Ch. 15 - Reflection. A wave pulse on a string has the...Ch. 15 - Reflection. A wave pulse on a string has the...Ch. 15 - Suppose that the left-traveling pulse in Exercise...Ch. 15 - Two pulses are moving in opposite directions at...Ch. 15 - Interference of Rectangular Pulses. Figure E15.35...Ch. 15 - CALC Adjacent antinodes of a standing wave on a...Ch. 15 - Prob. 15.37ECh. 15 - Prob. 15.38ECh. 15 - A wire with mass 40.0 g is stretched so that its...Ch. 15 - A piano tuner stretches a steel piano wire with a...Ch. 15 - CALC A thin, taut string tied at both ends and...Ch. 15 - Prob. 15.42ECh. 15 - Prob. 15.43ECh. 15 - Prob. 15.44ECh. 15 - Prob. 15.45ECh. 15 - Prob. 15.46ECh. 15 - Guitar String. One of the 63.5-cm-long strings of...Ch. 15 - A transverse wave on a rope is given by...Ch. 15 - CALC A transverse sine wave with an amplitude of...Ch. 15 - CP A 1750-N irregular beam is hanging horizontally...Ch. 15 - Three pieces of string, each of length L, are...Ch. 15 - Weightless Ant. An ant with mass m is standing...Ch. 15 - You must determine the length of a long, thin wire...Ch. 15 - Music. You are designing a two-string instrument...Ch. 15 - CP A 5.00-m, 0.732-kg wire is used to support two...Ch. 15 - A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 15 - For a string stretched between two supports, two...Ch. 15 - A 0.800-m-long string with linear mass density =...Ch. 15 - CP A 1.80-m-long uniform bar that weighs 638 N is...Ch. 15 - A continuous succession of sinusoidal wave pulses...Ch. 15 - A horizontal wire is tied to supports at each end...Ch. 15 - CP A vertical, 1.20-m length of 18-gauge (diameter...Ch. 15 - A sinusoidal transverse wave travels on a string....Ch. 15 - A vibrating string 50.0 cm long is under a tension...Ch. 15 - Clothesline Nodes. Cousin Throckmorton is once...Ch. 15 - A strong string of mass 3.00 g and length 2.20 m...Ch. 15 - A thin string 2.50 m in length is stretched with a...Ch. 15 - CALC A guitar string is vibrating in its...Ch. 15 - A uniform cylindrical steel wire, 55.0 cm long and...Ch. 15 - A string with both ends held fixed is vibrating in...Ch. 15 - CP A large rock that weighs 164.0 N is suspended...Ch. 15 - Holding Up Under Stress. A string or rope will...Ch. 15 - Tuning an Instrument. A musician tunes the...Ch. 15 - Prob. 15.74PCh. 15 - DATA In your physics lab, an oscillator is...Ch. 15 - DATA You are measuring the frequency dependence of...Ch. 15 - CP CALC A deep-sea diver is suspended beneath the...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...Ch. 15 - BIO WAVES ON VOCAL FOLDS. In the larynx, sound is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- There is a long steel wire of length 4.31 m where its upper end is attached to the ceiling. At the other end, a 57.6 kg object is suspended. It is observed that it takes a transverse pulse 0.0232 s to travel from the bottom to the top of the wire. What is the mass of the wire? NOTE: Final answer in THREE decimal places. Include the unit. Round your answer to 3 decimal places. Add your answerarrow_forwardA wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s in case the value of amplitude A corresponds to the first letter of your name: letter E A. A=0.1 mB. A=0.15 mC. A=0.2 mÇ. A=0.25 mD. A=0.3 mDh. A=0.35 mE. A=0.4 mË. A=0.45 mF. A=0.5 m G. A=0.55 mGj. A=0.6 mH. A=0.65 mI. A=0.7 mJ. A=0.75 mK. A=0.8 mL. A=0.85 mLl. A=0.9 mM. A=0.95 m N. A=1.05 mNj. A= 1.1 mO. A=1.15 mP. A=1.2 mQ. A=1.25 mR. A=1.3 mRr. A=1.35 mS. A=1.4 mSh. A=1.45 m T. A=1.5 mTh. A=1.55 mU. A=1.6 mV. A=1.65 mX. A=1.7 mXh. A=1.75 mY. A=1.8 mZ. A=1.85 mZh. A=1.9 m 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results?…arrow_forwardThe displacement of the air molecules in sound wave is modeled with the wave function s(x,t) 5.40 nm cos(86.54 m- x – 31600 s 1 -1 t). What is the wave speed of the sound wave? Submit Answer Tries 0/10 What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? Submit Answer Tries 0/10 What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion? Submit Answer Tries 0/10arrow_forward
- please also expand on the explanation of the 1 wordarrow_forwardA wave is modeled by the wave function y(x,t) = (0.31m) sin[(2π/4.68m)(x-(14.03m/s)t)]. What is the period of the wave? Round your answer to 2 decimal places.arrow_forwardA fisherman notices that his boat is moving up and down in a periodic way 5 points because of the waves on the surface of water. It takes 4.0 seconds for the boat to travel from its highest to its lowest point, a distance of 3.0 meters. The fisherman sees that the wave crests are spaced 8.0 meters apart.What is the amplitude, wavelength and period of the wave? and how fast are the waves traveling?arrow_forward
- A small ball of mass M=10.0kg is attached to a simple pendulum hanging from a uniform string of mass m=0.06kg. The period of oscillations for the simple pendulum is 8s. Determine the speed of a transverse wave (in m/s) in the string when the pendulum hangs at rest. Take g=9.8m/s2. State your answer to the nearest 0.01m/s. HINT: Since m<arrow_forwardIn a physics lab, a rope is observed to make 240 complete vibrational cycles in 15 seconds. The length of the rope is 2.8 meters and the measurements are made for the 6th harmonic (with six equal length sections). Determine the speed of the waves in the rope.arrow_forwardA.) The frequency of a vibrating bar is inversely proportional to the SQUARE of its length: f = constant/L2. I have two identical bars, except that one has a length of 36.8 cm and the other a length of 24.2 cm. What is the ratio of the vibrational frequency of the shorter bar to the longer bar? B.)A 0.8 meter length of string in mode number 2 vibrates with a frequency of 385 Hz. What is the velocity of the wave on the stringarrow_forwardskip if you already did this or else downvotearrow_forward1. In simple harmonic motion, the speed is greatest at that point in the cycle when (A) the magnitude of the acceleration is a maximum. (B) the displacement is a minimum. (C) the magnitude of the acceleration is a minimum. (D) the potential energy is a maximum. (E) the kinetic energy is a minimum. 2. For the wave shown in the figure below, the wavelength is M 1(s) (A) 4 m. (B) 2 m. (C) 1 m. (D) unable to be determined from the given information. (E) None of thesearrow_forwardWhat is the angular velocity of the waves? What is the wave phase at the time of the second observation [0...2 pi]?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning