Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 14.7, Problem 57P
To determine
The contribution of people to the total cooling load of the store.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
installing the dry cooling tower has decreased both net power and efficiency. explain why?
Heat is produced by computers while they run. Do you have any questions concerning computer cooling systems?
The cooling load calculations on a theatre show that at design conditions the sensible heat load is 200 kw and the latent heat load is 70 kw. The indoor design conditions are 26°C dry bulb and50% relative humidity. Air is to be supplied to the theatre at 16°C while the outside airis at 30°C dry bulb and 60% relative humidity. Take ventilating air as 25% of the supply air. Calculate the tons of refrigeration required by the conditioner.
Chapter 14 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- With the help of a neat figure discuss the working principle of evaporative cooling system. What are the factors to be considered while designing an evaporative cooling system?arrow_forwardExplain what a "heated zone" is, how it operates, and any potential restrictions.arrow_forwardAre there any ways to overcome the limitations of natural ventilation such as unpredictable airflow and temperature differences? Is it more beneficial than not?arrow_forward
- Pick the right combination of True Statements. 1. As the by-pass factor (BPF) of the cooling coil increases, temperature difference between air at the outlet of the coil and coil ADP decreases. 2. As the by-pass factor (BPF) of the cooling coil increases, temperature difference between air at the outlet of the coil and coil ADP increases. 3. During cooling and humidification process, the enthalpy of air may increase, decrease or remain constant depending upon the temperature of the wet surface. 4. During sensible cooling of air, dry bulb temperature decreases but wet bulb temperature remains constant 5. The sensible heat factor for a sensible heating process is 1.0arrow_forwardQUESTION 24 300 people are watching a movie at a movie theater which is maintained at 75°F DB. The movie starts at 12:30 pm and ends at 2:30 pm. What is the total cooling load from people ? 20,000 BTU/hr O 31,500 BTU/hr O 67,500 BTU/hr 99,000 BTU/hrarrow_forwardPrepare a report on the heating systems available in your area for residential buildings. Discuss the advantages and disadvantages of each system and compare their initial and operating costs.arrow_forward
- How to solve theoretical efficiency of the cooling tower regarding air and water entering the system? Please provide examples. Subject : Heat transferarrow_forward8.8. A solar collector and storage tank, shown in Fig. 8-15a, is to be optimized to achieve minimum first cost. During the da Hide image transcript 8.8. A solar collector and storage tank, shown in Fig. 8-15a, is to be optimized to achieve minimum first cost. During the day the temperature of water in the storage vessel is elevated from 25°C (the minimum useful temperature) to tmax, as shown in Fig. 8-15b. The collector receives 260 W/m² of solar ener- gy, but there is heat loss from the collector to ambient air by convection. The convection coefficient is 2 W/(m² · K), and the average temperature differ- ence during the 10-hour day is (25 + tmax)/2 minus the ambient temperature of 10°C. The energy above the minimum useful temperature of 25°C that is to be stored in the vessel during the day is 200,000 kJ. The density of water is 1000 kg/m³, and its specific heat is 4.19 kJ/(kg · K). The cost of the solar collector in dollars is 20A, where A is the area in square meters, and the cost…arrow_forwardThe sensible effectiveness of a heat recovery ventilator is 53.6%. The inlet temperature of fresh air is 35°C and relative humidity is 50%. The inlet temperature of exhaust air is 24°C and relative humidity is 60%. The mass flow rates of fresh air and exhaust air are 1.3 kg/s and 1.5 kg/s, respectively. Calculate the outlet fresh air temperature and estimate the energy saving ratio of adopting heat recovery ventilator.arrow_forward
- An office in Houston, Texas, is maintained at 25°C and 55 percent relative humidity. The average occupancy is five people, and there will be some smoking. Calculate the cooling load imposed by ventilation requirements at summer design conditions with supply air conditions set at 15°C and 95 percent relative humidity if (a) the recommended rate of outside ventilation air is used and (b) if a filtration device of E = 70 percent is used.arrow_forwardexplain the principle of operation of a cooling tower and neatly sketch section, analyse a crossflow cooling tower.arrow_forwardA space to be conditioned has a sensible heat load of 80 kw and a latent heat load of 20 kw and is to be maintained at 20°C and 50% relative humidity. Outside air is at 35°C and 60% RH. The conditioned air will enter the space at 15°C. If 40% of the supply air is fresh and the rest is recirculated, the refrigeration capacity of the system is nearest to what value? 430 kw 455 kw 428 kw Ⓒ333 kwarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY