Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.7, Problem 56P
To determine
What is latent heat? How the latent heat loss from the human body is affected by the (a) skin wittedness and (b) relative humidity of the environment and how is the rate of evaporation from the body related to the rate of latent heat loss.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air at 30 ºC with a dew point of 14ºC enters a textile dryer at a rate of 15.3 m3/min and leaves saturated. The dryer operates adiabatically. Use the psychrometric chart to determine the absolute humidity and humid volume of the entering air, and then use the results to determine the flow rate of dry air (kg/min) through the dryer, thefinal temperature of the air, and the rate (kg/min) at which water is evaporated in the dryer.
Air at dry bulb temperature of 26 Celsius and a RH of 85% is heated to a dry bulb temperature at 100 Celsius . The dryer contains 2300 kg of coconut with an initial moisture content of 67% wet basis. If the average moisture content of the product is 15% wet basis, after drying for 7 hour, with the air flow rate of 1739kg/hr., determine the exit air temperature and relative humidity, and heat requirement in kW.
(B). A parallel-flow heat exchanger is used to cool milk (C=3.845 J/Kg. 0C) entering at 110 Celsius. The flow rate of milk is 1.5 kg/s. Cold water (C=4.178 KJ/ kg 0C) enters at 22 Celsius with a flow rate of 3.0 kg/s and exits at 45 0C. The overall heat transfer coefficient is known to be 300 W/m2.0
Calculate (a). The exit temperature of milk(c). Draw the temperature profile of above heat exchanger(b). The heat transfer surface area required
A wet cooling tower is to cool 60 kg/s of water from 40 to 26°C. Atmospheric air enters the tower
at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 34°C
with a relative humidity of 90 percent. Determine (a) the volume flow rate of air into the cooling
tower and (b) the mass flow rate of the required makeup water. Note: do not use the psychrometric
chart for calculation.
WARM
WATER
60 kg/s
40°C
AIR
INLET
1 atm
Tdb = 22°C
Twb = 16°C
26°C
COOL
WATER
Makeup
water
AIR
EXIT
34°C
90%
Chapter 14 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A wet cooling tower is to cool 60 kg/s of water from 40 to 26°C. Atmospheric air enters the tower at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 34°C with a relative humidity of 90 percent. Using the psychrometric chart, determine: (a) the volume flow rate of air into the cooling tower; and (b) the mass flow rate of the required makeup water. Answers: (a) 44.9 m3/s, (b) 1.16 kg/sarrow_forwardThe atmospheric air at 30°C dry bulb temperature and 75% relative humidity enters a cooling coil at the rate of 200 m3 /min. The coil dew point temperature is 14°C and the by-pass factor of the coil is 0.1. Determine: 1.The temperature of air leaving the cooling coil; 2.The capacity of the cooling coil in tones of refrigeration and in kilowatt; 3. The amount of water vapor removed per minute; and 4. The sensible heat factor for the process.arrow_forward100-120. A 3387 kg of moisture per hour is being removed from a material by a drier and the air leaving it has a humidity ratio of 0.02345 kg of moisture per kg of dry air. The outside air is initially at 16°C dry bulb and has a relative humidity of 50%. The air is heated to a temperature of 69°C by steam coils and between the heater and the drier air inlet a drop of 9°C occurs in the air temperature. How much steam is required in kg/s if the steam supplied is at 138 kPa and 0.97 quality?arrow_forward
- Air enters a 50-cm-diameter cooling section at 100 kPa, 35°C, and 30 percent relative humidity at 20 m/s. Heat is removed from the air at a rate of 1500 kJ/min. Determine (a) the exit temperature, (b) the exit relative humidity of the air, and (c) the exit velocity. 1500 kJ/min 35°C 30% RH AIR 20 m/s 100 kPaarrow_forwardAn auditorium is to be maintained at a temperature of 24°C dry bulb and 18°C wet bulb temperatures. The sensible heat load is 67 kW and 49 kg per hour or moisture must be removed. Air is supplied to the auditorium at 19°C. Determine (A) the relative humidity at condition 1 and 2 (B) the mass flow rate of supply air, (C) the enthalpy and specific volume of condition 1 and 2, and (D) the sensible heat ratio.arrow_forwardAir at a temperature of 26.7C and a total pressure of 200 kPa contains water vapor with a partial pressure of 2.8 kPa. Determine: (a) the percentage humidity, (b) relative humidity, (c) absolute humidity (d) humid heat in kJ/kg-K (e) wet bulb temperature, and (f) humid volume. Ans: (a) 79.7% (b) 80% (c) 0.00881 (d) 1.0215 (e) 21.2C (f) 0.4435 m3/kg d.a.arrow_forward
- Read the question carefully and give me right solution according to the questionarrow_forwardDetermine the relative humidity and dew point temperature of moist air at 95 F dry bulb temperature, 80 F thermodynamic wet bulb temperature, and 13.2 psia pressure.arrow_forwardHumid air at 40 psia, 50oF, and 90 percent relative humidity is heated in a pipe at constant pressure to 120oF. Calculate the relative humidity at the pipe outlet and the amount of heat, in Btu/lbm dry air, required.arrow_forward
- Ambient air enters a cooling coil at 24°C db-temperature and 50% relative humidity with a dry air mass flow rate of 0.9 kg/s. The air leaving the cooling coil at 9°C is reheated to 13°C and 70% relative humidity. The pressure is constant at 101.3 kPa. Determine:the dew-point of the ambient air in °Cthe rate of moisture removal in the cooling coil in kg/sthe refrigeration capacity of the cooling coil in kWthe heat input rate of the heating coil in kWarrow_forwardIn an attempt to conserve water and to be awarded LEED (Leadership in Energy and Environmental Design) certification, a 20,000-liter cistern has been installed during construction of a new building. The cistern collects water from an HVAC (heating, ventilation, and air-conditioning) system designed to provide 2830 cubic meters of air per minute at 22°C and 50% relative humidity after converting it from ambient conditions (31°C, 70% relative humidity). The collected condensate serves as the source of water for lawn maintenance. Estimate (a) the rate of intake of air at ambient conditions in cubic feet per minute and (b) the hours of operation required to fill the cistern.arrow_forwardA conditioned space receives warm, humidified air during winter air conditioning in order to maintain 20 °C and 30% relative humidity. The space experiences an infiltration rate of 0.3 kg/s of outdoor air and an additional sensible heat loss of 25 kW. The outdoor air is saturated at a temperature of –20 °C (see the table of properties of saturated air at atmospheric pressure of 101.325 kPa). If conditioned air is supplied at 40 °C dry-bulb temperature, what must the wetbulb temperature of supply air be in oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer [Conduction, Convection, and Radiation]; Author: Mike Sammartano;https://www.youtube.com/watch?v=kNZi12OV9Xc;License: Standard youtube license