Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.7, Problem 98P
Consider the adiabatic mixing of two airstreams. Does the state of the mixture on the psychrometric chart have to be on the straight line connecting the two states?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q: 7200 m/hr of moist air at 40°C DBT, 22 °C WBT and 95 kpa barometric
pressure, flows through on an evaporative air cooler and leaves it at 28 °C DBT
and 22 °C WBT. Calculate without using the psychometric Chart:
i. The relative humidity before and after the process.
ii. Water Consumption in evaporative air cooler.
ii. effectiveness of the air cooler.
iv. The latent heat added through the process.
v. The sensible heat rejected through the process.
Note: P, = P, - PatA(DBT – WBT)
when A=6.66x10+ "C
Thermodynamic
how it's simply 150 KJ/hr * 1800 = 270,000 KJ/hr?
Chapter 14 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is vapor pressure?Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Explain how vapor pressure of the ambient air is...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 9PCh. 14.7 - Consider a tank that contains moist air at 3 atm...
Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Why are the chilled water lines always wrapped...Ch. 14.7 - How would you compare the enthalpy of water vapor...Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 15PCh. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Determine the masses of dry air and the water...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - Prob. 19PCh. 14.7 - Prob. 20PCh. 14.7 - Prob. 21PCh. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - Prob. 27PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - Prob. 33PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Prob. 39PCh. 14.7 - Prob. 40PCh. 14.7 - Prob. 41PCh. 14.7 - Atmospheric air at a pressure of 1 atm and...Ch. 14.7 - Reconsider Prob. 1443. Determine the adiabatic...Ch. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 49PCh. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - Why is the metabolic rate of women, in general,...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Prob. 59PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 64PCh. 14.7 - Humid air at 150 kPa, 40C, and 70 percent relative...Ch. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Prob. 67PCh. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 69PCh. 14.7 - Prob. 70PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Air at 14.7 psia, 35F, and 50 percent relative...Ch. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 75PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Atmospheric air at 1 atm, 30C, and 80 percent...Ch. 14.7 - Ten thousand cubic feet per hour of atmospheric...Ch. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - On a summer day in New Orleans, Louisiana, the...Ch. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Saturated humid air at 70 psia and 200F is cooled...Ch. 14.7 - Humid air is to be conditioned in a...Ch. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 89PCh. 14.7 - Prob. 90PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 92PCh. 14.7 - Prob. 93PCh. 14.7 - Air enters an evaporative (or swamp) cooler at...Ch. 14.7 - Prob. 95PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - Prob. 105PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Water at 30C is to be cooled to 22C in a cooling...Ch. 14.7 - Prob. 113PCh. 14.7 - Prob. 114RPCh. 14.7 - Determine the mole fraction of dry air at the...Ch. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - Prob. 121RPCh. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - Prob. 125RPCh. 14.7 - Prob. 126RPCh. 14.7 - Prob. 128RPCh. 14.7 - Prob. 129RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 131RPCh. 14.7 - Atmospheric air enters an air-conditioning system...Ch. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - An automobile air conditioner uses...Ch. 14.7 - Prob. 135RPCh. 14.7 - Prob. 137RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 144FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - Prob. 146FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A- Answer the following: 1- How does humidity affect human comfort? 2- Consider the adiabatic mixing of two airstreams. Does the state of the mixture on the psychrometric chart have to be on the straight line connecting the two states? 3- In winter is the temperature of weather increase or decrease when the rain starts? B- A 0.3 m³ rigid tank contains 0.6 kg of N2 and 0.4 kg of 02 at 300 K. Determine the partial pressure of each gas and the total pressure of the mixture. Take gas constant for N2 as 296.8 and for 02 as 259.8arrow_forwardFor summer air conditioner application of a room; The sensible heat gain of the room is 13kW, the latent heat gain is 3kW, and the design conditions are determined as 21°C relative humidity 55%. Outdoor air conditions are at 42 °C 35% relative humidity, and the relative humidity of the air passing through the cooling coil at the exit from the coil will be 95%. Since the amount of air blown into the environment is 5000m^3/h, the return air is 700 m^3/h: a- Show the event in the psychometric diagram according to the data of the air conditioning application. b-Find the dry bulb temperature of the air at the outlet of the cooling coil. c-Calculate the amount of air that is bypassed and not by-passed from the coil B Mahalarrow_forwardAir enters a humidifier at 34.25°C and 30% RH. If the air leaves the humidifier at 70% RH. Determine: The exit dry-bulb temperature of the air in °C.The saturation effectiveness in %.arrow_forward
- Please answer in clear handwritingarrow_forwardSaturated ambient air with a db-temperature of 5°C and a mass flow rate of 0.9 kg/s is divided into two streams. One stream passes through a heating section and leaves it with a relative humidity of 25%. The conditions of the other stream that bypasses the heater remains unchanged. The two streams are then mixed to produce the supply air stream at 24°C. The pressure is constant at 101.3 kPa. -Determine the partial pressure of water vapor of the heated air in kPa.-The heat input by the heating coil in kW.-The mass flow of air through the bypass section in kg/s.arrow_forwardPlease answer and will surely give an upvote. Thank you. 8. 1.5 m3/s of moist air at a state of 28℃ DB, 21℃ WB, and 101.325 kPa flows across a cooler coil and leaves at 12.5℃ DB and 0.0083 kg/kg d.a. Determine the following: a. The apparatus dew-point temperature in ℃ using the Psychrometric chart. b. The By-Pass factor in percentile (%) c. The cooling load of the process in kilowatts (kW)arrow_forward
- An auditorium seating 1800 people in three consecutive sitting for 6 hours, is to be maintained at 25°C dry bulb and 20°C wet bulb temperatures with outdoor air at 35°C dry bulb and 60% relative humidity. Conditioned air enters the auditorium at 15°C. Ventilation requirement is 8 m³/hr per person. Solar and other heat loads amount to 108,000 KJ/hr. The sensible and latent heat loads from the occupants is 275 KJ/hr per person and 150 KJ/hr per person, respectively. The ventilation load is nearest to what value? 266.64 kw 29.63 kw 115 kw 44.12 kwarrow_forwardالسؤال الثالث The thermodynamic properties of refrigerant R22 mixture of liquid and vapor leaving the expansion device and entering the evaporator are: pressure of 498 KPa, temperature of 0 °C, fraction dryness (x) of 0.238, saturated liquid enthalpy of 200 kJ/kg, and saturated vapour enthalpy of 405 kJ/kg. The pressure of this refrigerant at the entrance of the condenser is measured to be 19.3 bar After the subcooling process, the enthalpy in (kJ/kg) and the pressure in (MPa) of this refrigerant have been measured and were found to be 199 47 kJ/kg and 2.3 MPa. 239. 68 kJ/kg and 1.96 MPAO 248.79 kU/kg and 1.93 MPa 110 52 kJ/kg and 3.1 MPa 1:29 PM 91°F Sunny 5/14/2022arrow_forwardAnswers for the 3 questions please dont know the correct answerarrow_forward
- PLEASE ANSWER THIS QUESTION ASAP!!!arrow_forwardAt sea level conditions, 2000 cfm of outside air is entering a mixing box at 50°F drybulb and 42°F wet bulb and mixes with 9000 cfm of return air which is at 80°F drybulb and 70°F wet bulb. Determine the thermodynamic state of the mixed air andreport the following for the mixed air: 1)Dry bulb temperature,2) Wet bulb temperature,3) Dew point temperature,4) Relative humidity,5) Humidity ratio,6) Specific enthalpy,7) Specific volume,8) Density,9) Mass flow rate. Show the process on a psychrometric chart.arrow_forwardAn air handler supplies 2.36 m3 /sec at a temperature of 12°C. The air handler was designed for 0.5 m3 /sec of outside air at 32oC DB and 26°C WB. The remaining return air from the space is at 25°C DB and 55% relative humidity. What are the entering conditions of the air into the coil, in DB and WB? Air pressure is 101.325 kPaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY