(a)
The volume flow rate of air into the cooling tower.
(a)
Answer to Problem 111P
The volume flow rate of air into the cooling tower is
Explanation of Solution
As the process is a steady flow and thus the mass flow rate of dry air remains constant during the entire process.
Here, the mass flow rate of air at inlet is
Express the water mass balance:
Here, mass flow rate of water at inlet and exit is
Express the energy balance.
Here, the rate of total energy entering the system is
Express initial partial pressure.
Here, relative humidity at state 1 is
Express partial pressure of air at state 1.
Here, pressure at state 1 is
Express specific volume at state 1.
Here, gas constant of air is
Express initial humidity ratio.
Express initial enthalpy.
Here, specific heat at constant pressure is
Express final partial pressure.
Here, relative humidity at state 2 is
Express final humidity ratio.
Here, pressure at state 2 is
Express final enthalpy.
Here, final specific enthalpy saturated vapor at temperature of
Express the volume flow rate of air into the cooling tower.
Here, specific volume at inlet is
Conclusion:
Refer Table A-2, “ideal-gas specific heats of various common gases”, and write the properties of air.
Refer Table A-4, “saturated water-temperature table”, and write the saturation pressure and initial specific enthalpy saturated vapor at temperature of
Substitute
Substitute
Substitute
Substitute
Substitute
Refer Table A-4, “saturated water-temperature table”, and write the saturation pressure and final specific enthalpy saturated vapor at temperature of
Substitute
Substitute
Substitute
Refer Table A-4, “saturated water-temperature table”, and write the enthalpy at state 3 at temperature of
Here, enthalpy of saturation liquid is
Refer Table A-4, “saturated water-temperature table”, and write the enthalpy at state 4 at temperature of
Substitute
Substitute
Hence, the volume flow rate of air into the cooling tower is
(b)
The mass flow rate of the required makeup water.
(b)
Answer to Problem 111P
The mass flow rate of the required makeup water is
Explanation of Solution
Express the mass flow rate of the required makeup water.
Conclusion:
Substitute
Hence, the mass flow rate of the required makeup water is
Want to see more full solutions like this?
Chapter 14 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- A wet cooling tower is to cool 60 kg/s of water from 40 to 33C. Atmospheric Air Enters the tower at 1 atm with a dry bulb and wet bulb temperatures of 22C and 16C respectively and leaves at 30C with a relative humidity of 95%. Determine (a) volume flow rate of the air into cooling tower (b) the mass flow rate of the require make up water, adn (c) the cooling tower efficiency.arrow_forward600 lps of air at 30°C dry-bulb and 22°C wet-bulb temperatures is heated to a temperature of 45°C and enters the dryer. The air leaves the dryer adiabatically and its relative humidity is 70%. Determine: (a.) The water evaporated kg/hr; (b.) The volume air leaving the dryer in cu.m/min; and (c.) kJ requirement of the dryer per kg of water evaporated.arrow_forward600 lps of air at 30°C dry-bulb and 22°C wet-bulb temperatures is heated to a temperature of 45°C and enters the dryer. The air leaves the dryer adiabatically and its relative humidity is 70%. Determine: (a.) The water evaporated kg/hr; (b.) The volume air leaving the dryer in cu.m/min; and (c.) kJ requirement of the dryer per kg of water evaporated and Make a process schematic diagramarrow_forward
- In an air-conditioning unit 3.5 m3/s air at 27°C dry-bulb temperature, 21°C wet-bulb temperature, and 95 kPa atmospheric pressure enters the unit. The leaving condition of the air is 13°C dry-bulb temperature and 90 percent relative humidity. Calculate the rate of water removal from the air in kg/s.arrow_forwardSaturated ambient air with a db-temperature of 5°C and a mass flow rate of 0.9 kg/s is divided into two streams. One stream passes through a heating section and leaves it with a relative humidity of 25%. The conditions of the other stream that bypasses the heater remains unchanged. The two streams are then mixed to produce the supply air stream at 24°C. The pressure is constant at 101.3 kPa. -Determine the partial pressure of water vapor of the heated air in kPa.-The heat input by the heating coil in kW.-The mass flow of air through the bypass section in kg/s.arrow_forwardIn an industrial plant where tires are made, there is a wet cooling tower which fulfills a very important part of the process, it must cool 15 kg/s of watercooling temperature from 45 to 27°C, in a location where the atmospheric pressure is 95 kPa.Atmospheric air enters the tower at 22 °C and 60% relative humidity, and leaves 0.87 saturated at a temperature of 37 °C.Neglecting the power input to the fan, determine the following:1. The volumetric flow of air at the inlet of the cooling tower.2. The mass flow of make-up water required.arrow_forward
- A wet cooling tower is to cool 60 kg/s of water from 40 to 26°C. Atmospheric air enters the tower at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 34°C with a relative humidity of 90 percent. Using the psychrometric chart, determine: (a) the volume flow rate of air into the cooling tower; and (b) the mass flow rate of the required makeup water. Answers: (a) 44.9 m3/s, (b) 1.16 kg/sarrow_forwardThe outside air is cooled by passing it through a cooling coil at 37°C and 0.70 relative humidity, and comes out as saturated air at 22°C and some moisture is taken by condensation. After this process, the cooled outdoor air is mixed with the return air at 27°C and 0.45 relative humidity. The ratio of return air to outside air is ¼ as dry air mass flow rates. It is assumed that the pressure remains constant at P=100 kPa. *Calculate the enthalpy, specific humidity, absolute humidity and temperature values of the air after mixing. (I would appreciate it if you could write the answers with the keyboard so that I can understand thanks)arrow_forwardAn air-conditioning system is to take in outdoor air at 10 C and 30 percent relative humidity at a steady rate of 45 m3/min and to condition it to 25 C and 60 percent relative humidity. The outdoor air is first heated to 22 C in the heating section and then humidified by the injection of hot steam in the humidifying section. Assuming the entire process takes place at a pressure of 100 kPa, determine a. the rate of heat supply in the heating section and b. the mass flow rate of the steam required in the humidifying section.arrow_forward
- An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and an evaporative cooler. Air enters the heating section at 15OC and 55 percent relative humidity at a rate of 30 m3 /min, and it leaves the evaporative cooler at 25OC and 45 percent relatively humidity. Determine the TOR.arrow_forwardAir enters an air-conditioning system that uses refrigerant-134a at 30OC and 70 percent relative humidity at a rate of 4 m3 /min. The refrigerant enters the cooling section at 700 kPa with a quality of 20 percent and leaves as saturated vapor. The air is cooled to 20OC at a pressure of 1 atm. Determine (a) the rate of dehumidification in kg/min Answer (b) the refrigerating Effect in KJ/min Answer (c) the mass flow rate of the refrigerant in kg/minAnswerarrow_forwardAmbient air enters a cooling coil at 24°C db-temperature and 50% relative humidity with a dry air mass flow rate of 0.9 kg/s. The air leaving the cooling coil at 9°C is reheated to 13°C and 70% relative humidity. The pressure is constant at 101.3 kPa. Determine:the dew-point of the ambient air in °Cthe rate of moisture removal in the cooling coil in kg/sthe refrigeration capacity of the cooling coil in kWthe heat input rate of the heating coil in kWarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY