(II) Tall buildings are designed to sway in the wind. In a 100-km/h wind, for example, the top of the 110-story Sears Tower oscillates horizontally with an amplitude of 15 cm. The building oscillates at its natural frequency, which has a period of 7.0 s. Assuming SHM , find the maximum horizontal velocity and acceleration experienced by a Sears employee as she sits working at her desk located on the top floor. Compare the maximum acceleration (as a percentage) with the acceleration due to gravity.
(II) Tall buildings are designed to sway in the wind. In a 100-km/h wind, for example, the top of the 110-story Sears Tower oscillates horizontally with an amplitude of 15 cm. The building oscillates at its natural frequency, which has a period of 7.0 s. Assuming SHM , find the maximum horizontal velocity and acceleration experienced by a Sears employee as she sits working at her desk located on the top floor. Compare the maximum acceleration (as a percentage) with the acceleration due to gravity.
(II) Tall buildings are designed to sway in the wind. In a 100-km/h wind, for example, the top of the 110-story Sears Tower oscillates horizontally with an amplitude of 15 cm. The building oscillates at its natural frequency, which has a period of 7.0 s. Assuming SHM, find the maximum horizontal velocity and acceleration experienced by a Sears employee as she sits working at her desk located on the top floor. Compare the maximum acceleration (as a percentage) with the acceleration due to gravity.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force
F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an
upward velocity of 5 m/s. Find its displacement for t> 0.
y(t)
ון
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.