Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 33P
(II) If one oscillation has 5.0 times the energy of a second one of equal frequency and mass, what is the ratio of their amplitudes?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) If one oscillation has 3.0 times the energy of a secondone of equal frequency and mass, what is the ratio of theiramplitudes ?
(5) The periodic time of the physical pendulum is (4n*k/gl), where k is the
radius of gyration.
(III) Consider two objects, A and B, both undergoingSHM, but with different frequencies, as described by the equations andwhere is in seconds. After find the next threetimes at which both objects simultaneously pass throughthe origin.
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 14.1 - An object is oscillating back and forth. Which of...Ch. 14.1 - A mass is oscillating on a frictionless surface at...Ch. 14.1 - If an oscillating mass has a frequency of 1.25 Hz,...Ch. 14.2 - Which of the following represents a simple...Ch. 14.2 - By how much should the mass on the end of a spring...Ch. 14.2 - The position of a SHO is given by x = (0.80 m)...Ch. 14.3 - Suppose the spring in Fig. 1410 is compressed to x...Ch. 14.5 - If a simple pendulum is taken from sea level to...Ch. 14.5 - Return to the Chapter-Opening Question, p. 369,...Ch. 14.5 - (a) Estimate the length of a simple pendulum that...
Ch. 14 - Give some examples of everyday vibrating objects....Ch. 14 - Is the acceleration of a simple harmonic...Ch. 14 - Explain why the motion of a piston in an...Ch. 14 - Real springs have mass. Will the true period and...Ch. 14 - How could you double the maximum speed of a simple...Ch. 14 - A 5.0-kg trout is attached to the hook of a...Ch. 14 - If a pendulum clock is accurate at sea level, will...Ch. 14 - A tire swing hanging from a branch reaches nearly...Ch. 14 - For a simple harmonic oscillator, when (if ever)...Ch. 14 - A 100-g mass hangs from a long cord forming a...Ch. 14 - Two equal masses are attached to separate...Ch. 14 - Does a car bounce on its springs faster when it is...Ch. 14 - What is the approximate period of your walking...Ch. 14 - What happens to the period of a playground swing...Ch. 14 - A thin uniform rod of mass m is suspended from one...Ch. 14 - A tuning fork of natural frequency 264 Hz sits on...Ch. 14 - Why can you make water slosh back and forth in a...Ch. 14 - Give several everyday examples of resonance.Ch. 14 - Is a rattle in a car ever a resonance phenomenon?...Ch. 14 - Over the years, buildings have been able to be...Ch. 14 - (I) If a particle undergoes SHM with amplitude...Ch. 14 - (I) An elastic cord is 65 cm long when a weight of...Ch. 14 - (I) The springs of a 1500-kg car compress 5.0 mm...Ch. 14 - (I) (a) What is the equation describing the motion...Ch. 14 - (II) Estimate the stiffness of the spring in a...Ch. 14 - (II) A fishermans scale stretches 3.6 cm when a...Ch. 14 - (II) Tall buildings are designed to sway in the...Ch. 14 - (II) Construct a Table, indicating the position x...Ch. 14 - (II) A small fly of mass 0.25 g is caught in a...Ch. 14 - (II) A mass m at the end of a spring oscillates...Ch. 14 - (II) A uniform meter stick of mass M is pivoted on...Ch. 14 - (II) A balsa wood block of mass 55g floats on a...Ch. 14 - (II) Figure 1429 shows two examples of SHM,...Ch. 14 - (II) Determine the phase constant in Eq. 144 if,...Ch. 14 - (II) A vertical spring with spring stiffness...Ch. 14 - (II) The graph of displacement vs. time for a...Ch. 14 - (II) The position of a SHO as a function of time...Ch. 14 - (II) A tuning fork oscillates at a frequency of...Ch. 14 - (II) An object of unknown mass m is hung from a...Ch. 14 - (II) A 1.25-kg mass stretches a vertical spring...Ch. 14 - (II) Consider two objects, A and B, both...Ch. 14 - (II) A 1.60-kg object oscillates from a vertically...Ch. 14 - (II) A bungee jumper with mass 65.0 kg jumps from...Ch. 14 - (II) A block of mass m is supported by two...Ch. 14 - (III) A mass m is connected to two springs, with...Ch. 14 - (III) A mass m is at rest on the end of a spring...Ch. 14 - (I) A l.15-kg mass oscillates according to the...Ch. 14 - (I) (a) At what displacement of a SHO is the...Ch. 14 - (II) Draw a graph like Fig. 1411 for a horizontal...Ch. 14 - (II) A 0.35-kg mass at the end of a spring...Ch. 14 - (II) It takes a force of 95.0 to compress the...Ch. 14 - (II) A 0.0125-kg bullet strikes a 0.240-kg block...Ch. 14 - (II) If one oscillation has 5.0 times the energy...Ch. 14 - (II) A mass of 240g oscillates on a horizontal...Ch. 14 - (II) A mass resting on a horizontal, frictionless...Ch. 14 - (II) An object with mass 2.7 kg is executing...Ch. 14 - (II) Agent Arlene devised the following method of...Ch. 14 - (II) Obtain the displacement x as a function of...Ch. 14 - (II) t t = 0, a 785-g mass at rest on the end of a...Ch. 14 - (II) A pinball machine uses a spring launcher that...Ch. 14 - (I) A pendulum has a period of 1.35s on Earth....Ch. 14 - (I) A pendulum makes 32 oscillations in exactly 50...Ch. 14 - (II) A simple pendulum is 0.30m long. At t = 0 it...Ch. 14 - (II) What is the period of a simple pendulum 53cm...Ch. 14 - (II) A simple pendulum oscillates with an...Ch. 14 - (II) Your grandfather clocks pendulum has a length...Ch. 14 - (II) Derive a formula for the maximum speed vmax...Ch. 14 - (II) A pendulum consists of a tiny bob of mass M...Ch. 14 - (II) The balance wheel of a watch is a thin ring...Ch. 14 - (II) The human leg can be compared to a physical...Ch. 14 - (II) (a) Determine the equation of motion (for as...Ch. 14 - (II) A student wants to use a meter stick as a...Ch. 14 - (II) A meter stick is hung at its center from a...Ch. 14 - (II) An aluminum disk. 12.5cm in diameter and 375g...Ch. 14 - (II) A plywood disk of radius 20.0cm and mass...Ch. 14 - (II) A 0.835-kg block oscillates on the end of a...Ch. 14 - (II) Estimate how the damping constant changes...Ch. 14 - (II) A physical pendulum consists of an...Ch. 14 - (II) A damped harmonic oscillator loses 6.0% of...Ch. 14 - (II) A vertical spring of spring constant 115 N/m...Ch. 14 - (III) (a) Show that the total mechanical energy,...Ch. 14 - (III) A glider on an air track is connected by...Ch. 14 - (II) (a) For a forced oscillation at resonance ( =...Ch. 14 - Prob. 64PCh. 14 - (II) An 1150 kg automobile has springs with k =...Ch. 14 - (II) Construct an accurate resonance curve, from ...Ch. 14 - (II) The amplitude of a driven harmonic oscillator...Ch. 14 - (III) By direct substitution, show that Eq. 1422,...Ch. 14 - (III) Consider a simple pendulum (point mass bob)...Ch. 14 - A 62-kg person jumps from a window to a fire net...Ch. 14 - An energy-absorbing car bumper has a spring...Ch. 14 - The length of a simple pendulum is 0.63 m, the...Ch. 14 - A simple pendulum oscillates with frequency f....Ch. 14 - A 0.650-kg mass oscillates according to the...Ch. 14 - (a)A crane has hoisted a 1350-kg car at the...Ch. 14 - An oxygen atom at a particular site within a DNA...Ch. 14 - A seconds pendulum has a period of exactly 2.000...Ch. 14 - A 320-kg wooden raft floats on a lake. When a...Ch. 14 - At what displacement from equilibrium is the speed...Ch. 14 - A diving board oscillates with simple harmonic...Ch. 14 - A rectangular block of wood floats in a calm lake....Ch. 14 - A 950-kg car strikes a huge spring at a speed of...Ch. 14 - A 1.60-kg table is supported on four springs. A...Ch. 14 - In some diatomic molecules, the force each atom...Ch. 14 - A mass attached to the end of a spring is...Ch. 14 - Carbon dioxide is a linear molecule. The...Ch. 14 - Imagine that a 10-cm-diameter circular hole was...Ch. 14 - A thin, Straight, uniform rod of length = 1.00 m...Ch. 14 - A mass m is gently placed on the end of a freely...Ch. 14 - A child of mass m sits on top of a rectangular...Ch. 14 - Estimate the effective spring constant of a...Ch. 14 - In Section 145, the oscillation of a simple...Ch. 14 - (II) A mass m on a frictionless surface is...Ch. 14 - (III) Damping proportional to v2. Suppose the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. How does the presence of a nonvolatile solute affect the boiling point and melting point of a solution rel...
Introductory Chemistry (6th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
According to the logistic growth equation dNdt=rN(KN)K (A) the number of individuals added per unit time is gre...
Campbell Biology (11th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding An engineer builds two simple pendulums. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums will differ if the bobs are both displaced by 12°.arrow_forwardShow that, if a driven oscillator is only lightly damped and driven near resonance, the Q of the system is approximately Q2(TotalenergyEnergylossduringoneperiod)arrow_forwardCheck Your Understanding Why are completely undamped harmonic oscillators so rare?arrow_forward
- (4) Due to the shape of the earth - in fact, it is not a perfect sphere - the acceleration due to gravity increases when latitude increases. If the pendulum is taken from the equator (latitude = 0°) to the North or South Pole (latitude = 90°), describe the changes that would take place with respect to the period of the pendulum and the accuracy of the clock (i.e., would the clock run too fast or too slow) and why.arrow_forward(II) Derive a formula for the maximum speed vmax of a simple pendulum bob in terms of g, the length {, and the maximum angle of swing 0max ·arrow_forward(b) An oscillating pendulum has length 0.3 m and 240 g bob. If the total energy is 0.06 J, calculate the amplitude of the oscillation. Satu handularrow_forward
- (II) A mass of 240 g oscillates on a horizontal frictionless surface at a frequency of 2.5 Hz and with amplitude of 4.5 cm. (a) What is the effective spring constant for this motion? (b) How much energy is involved in this motion?arrow_forwardAccording to Eq. (21), the amplitude of forced steady periodic oscillations for the system mx" + cx' + kx = Fo cos ot is given by Fo C(@) = V(k – mo²)2 + (co)² (a) If c 2 Cer/2, where cer = V4km, show that C steadily decreases as w increases. (b) If c < cer//2, show that C attains a maximum value (practical reso- nance) when c2 < wo = 2m2 w = Wm =arrow_forwardpls answer q(iii)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY