Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 43P
(II) A simple pendulum is 0.30m long. At t = 0 it is released from rest starling at an angle of 13°. Ignoring friction, what will be the angular position of the pendulum at (a) t = 0.35 s, (b) t = 3.45 s, and (c) t = 6.00s?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(III) A clock pendulum oscillates at a frequency of 2.5 Hz.At t=0 it is released from rest starting at an angle of 12°to the vertical. Ignoring friction, what will be the position(angle in radians) of the pendulum at (a) t=0.25s(b) t=1.60s and (c) t=500s
In an oscillatory motion of a simple pendulum, the ratio of the maximum angular
acceleration, O"max, to the maximum angular velocity, e max, is 2 s^(-1). What is
the time needed for the pendulum to complete two oscillations?
() 4 sec
0.5 sec
2 sec
1 sec
0.25 sec
Consider a place where the gravity is one-ninth the gravity on Earth (g' g/9),
then the frequency of oscillation of a simple pendulum in that place. f. as
compared to its frequency on earth is:
Learn How to Sp
(C) Increase its length to 2L
(d)increase its length to 4L
9) A simple pendulum of length L is set to oscillate in simple harmonic motion. When its potential
energy is one-half its total mechanical energy, U = E/2, then which of the following is true about its
velocity:
(a) v = tvmax /2
(b) v = tvmay (4
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 14.1 - An object is oscillating back and forth. Which of...Ch. 14.1 - A mass is oscillating on a frictionless surface at...Ch. 14.1 - If an oscillating mass has a frequency of 1.25 Hz,...Ch. 14.2 - Which of the following represents a simple...Ch. 14.2 - By how much should the mass on the end of a spring...Ch. 14.2 - The position of a SHO is given by x = (0.80 m)...Ch. 14.3 - Suppose the spring in Fig. 1410 is compressed to x...Ch. 14.5 - If a simple pendulum is taken from sea level to...Ch. 14.5 - Return to the Chapter-Opening Question, p. 369,...Ch. 14.5 - (a) Estimate the length of a simple pendulum that...
Ch. 14 - Give some examples of everyday vibrating objects....Ch. 14 - Is the acceleration of a simple harmonic...Ch. 14 - Explain why the motion of a piston in an...Ch. 14 - Real springs have mass. Will the true period and...Ch. 14 - How could you double the maximum speed of a simple...Ch. 14 - A 5.0-kg trout is attached to the hook of a...Ch. 14 - If a pendulum clock is accurate at sea level, will...Ch. 14 - A tire swing hanging from a branch reaches nearly...Ch. 14 - For a simple harmonic oscillator, when (if ever)...Ch. 14 - A 100-g mass hangs from a long cord forming a...Ch. 14 - Two equal masses are attached to separate...Ch. 14 - Does a car bounce on its springs faster when it is...Ch. 14 - What is the approximate period of your walking...Ch. 14 - What happens to the period of a playground swing...Ch. 14 - A thin uniform rod of mass m is suspended from one...Ch. 14 - A tuning fork of natural frequency 264 Hz sits on...Ch. 14 - Why can you make water slosh back and forth in a...Ch. 14 - Give several everyday examples of resonance.Ch. 14 - Is a rattle in a car ever a resonance phenomenon?...Ch. 14 - Over the years, buildings have been able to be...Ch. 14 - (I) If a particle undergoes SHM with amplitude...Ch. 14 - (I) An elastic cord is 65 cm long when a weight of...Ch. 14 - (I) The springs of a 1500-kg car compress 5.0 mm...Ch. 14 - (I) (a) What is the equation describing the motion...Ch. 14 - (II) Estimate the stiffness of the spring in a...Ch. 14 - (II) A fishermans scale stretches 3.6 cm when a...Ch. 14 - (II) Tall buildings are designed to sway in the...Ch. 14 - (II) Construct a Table, indicating the position x...Ch. 14 - (II) A small fly of mass 0.25 g is caught in a...Ch. 14 - (II) A mass m at the end of a spring oscillates...Ch. 14 - (II) A uniform meter stick of mass M is pivoted on...Ch. 14 - (II) A balsa wood block of mass 55g floats on a...Ch. 14 - (II) Figure 1429 shows two examples of SHM,...Ch. 14 - (II) Determine the phase constant in Eq. 144 if,...Ch. 14 - (II) A vertical spring with spring stiffness...Ch. 14 - (II) The graph of displacement vs. time for a...Ch. 14 - (II) The position of a SHO as a function of time...Ch. 14 - (II) A tuning fork oscillates at a frequency of...Ch. 14 - (II) An object of unknown mass m is hung from a...Ch. 14 - (II) A 1.25-kg mass stretches a vertical spring...Ch. 14 - (II) Consider two objects, A and B, both...Ch. 14 - (II) A 1.60-kg object oscillates from a vertically...Ch. 14 - (II) A bungee jumper with mass 65.0 kg jumps from...Ch. 14 - (II) A block of mass m is supported by two...Ch. 14 - (III) A mass m is connected to two springs, with...Ch. 14 - (III) A mass m is at rest on the end of a spring...Ch. 14 - (I) A l.15-kg mass oscillates according to the...Ch. 14 - (I) (a) At what displacement of a SHO is the...Ch. 14 - (II) Draw a graph like Fig. 1411 for a horizontal...Ch. 14 - (II) A 0.35-kg mass at the end of a spring...Ch. 14 - (II) It takes a force of 95.0 to compress the...Ch. 14 - (II) A 0.0125-kg bullet strikes a 0.240-kg block...Ch. 14 - (II) If one oscillation has 5.0 times the energy...Ch. 14 - (II) A mass of 240g oscillates on a horizontal...Ch. 14 - (II) A mass resting on a horizontal, frictionless...Ch. 14 - (II) An object with mass 2.7 kg is executing...Ch. 14 - (II) Agent Arlene devised the following method of...Ch. 14 - (II) Obtain the displacement x as a function of...Ch. 14 - (II) t t = 0, a 785-g mass at rest on the end of a...Ch. 14 - (II) A pinball machine uses a spring launcher that...Ch. 14 - (I) A pendulum has a period of 1.35s on Earth....Ch. 14 - (I) A pendulum makes 32 oscillations in exactly 50...Ch. 14 - (II) A simple pendulum is 0.30m long. At t = 0 it...Ch. 14 - (II) What is the period of a simple pendulum 53cm...Ch. 14 - (II) A simple pendulum oscillates with an...Ch. 14 - (II) Your grandfather clocks pendulum has a length...Ch. 14 - (II) Derive a formula for the maximum speed vmax...Ch. 14 - (II) A pendulum consists of a tiny bob of mass M...Ch. 14 - (II) The balance wheel of a watch is a thin ring...Ch. 14 - (II) The human leg can be compared to a physical...Ch. 14 - (II) (a) Determine the equation of motion (for as...Ch. 14 - (II) A student wants to use a meter stick as a...Ch. 14 - (II) A meter stick is hung at its center from a...Ch. 14 - (II) An aluminum disk. 12.5cm in diameter and 375g...Ch. 14 - (II) A plywood disk of radius 20.0cm and mass...Ch. 14 - (II) A 0.835-kg block oscillates on the end of a...Ch. 14 - (II) Estimate how the damping constant changes...Ch. 14 - (II) A physical pendulum consists of an...Ch. 14 - (II) A damped harmonic oscillator loses 6.0% of...Ch. 14 - (II) A vertical spring of spring constant 115 N/m...Ch. 14 - (III) (a) Show that the total mechanical energy,...Ch. 14 - (III) A glider on an air track is connected by...Ch. 14 - (II) (a) For a forced oscillation at resonance ( =...Ch. 14 - Prob. 64PCh. 14 - (II) An 1150 kg automobile has springs with k =...Ch. 14 - (II) Construct an accurate resonance curve, from ...Ch. 14 - (II) The amplitude of a driven harmonic oscillator...Ch. 14 - (III) By direct substitution, show that Eq. 1422,...Ch. 14 - (III) Consider a simple pendulum (point mass bob)...Ch. 14 - A 62-kg person jumps from a window to a fire net...Ch. 14 - An energy-absorbing car bumper has a spring...Ch. 14 - The length of a simple pendulum is 0.63 m, the...Ch. 14 - A simple pendulum oscillates with frequency f....Ch. 14 - A 0.650-kg mass oscillates according to the...Ch. 14 - (a)A crane has hoisted a 1350-kg car at the...Ch. 14 - An oxygen atom at a particular site within a DNA...Ch. 14 - A seconds pendulum has a period of exactly 2.000...Ch. 14 - A 320-kg wooden raft floats on a lake. When a...Ch. 14 - At what displacement from equilibrium is the speed...Ch. 14 - A diving board oscillates with simple harmonic...Ch. 14 - A rectangular block of wood floats in a calm lake....Ch. 14 - A 950-kg car strikes a huge spring at a speed of...Ch. 14 - A 1.60-kg table is supported on four springs. A...Ch. 14 - In some diatomic molecules, the force each atom...Ch. 14 - A mass attached to the end of a spring is...Ch. 14 - Carbon dioxide is a linear molecule. The...Ch. 14 - Imagine that a 10-cm-diameter circular hole was...Ch. 14 - A thin, Straight, uniform rod of length = 1.00 m...Ch. 14 - A mass m is gently placed on the end of a freely...Ch. 14 - A child of mass m sits on top of a rectangular...Ch. 14 - Estimate the effective spring constant of a...Ch. 14 - In Section 145, the oscillation of a simple...Ch. 14 - (II) A mass m on a frictionless surface is...Ch. 14 - (III) Damping proportional to v2. Suppose the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The light reactions of photosynthesis supply the Calvin cycle with A. light energy. B. CO2 and ATP. C. O2 and N...
Campbell Biology in Focus (2nd Edition)
MAKE CONNECTIONS Using what you know of gene expression in a cell, explain what causes the traits of parents (...
Campbell Biology (11th Edition)
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardA simple pendulum as shown in Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulums position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.) (a) Position(s) of instantaneous rest ___ (b) Position(s) of maximum velocity ___ (c) Position(s) of maximum Ek ___ (d) Position(s) of maximum Ep ___ (e) Position(s) of minimum Ek ___ (f) Position(s) of minimum Ep ___ (g) Position(s) after which Ek increases ___ (h) Position(s) after which Ep increases ___ (i) Position(s) after which Ek decreases ___ (j) Position(s) after which Ep decreases ___ Figure 4.24 The Simple Pendulum and Energyarrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forward
- If the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forwardRefer to the problem of the two coupled oscillators discussed in Section 12.2. Show that the total energy of the system is constant. (Calculate the kinetic energy of each of the particles and the potential energy stored in each of the three springs, and sum the results.) Notice that the kinetic and potential energy terms that have 12 as a coefficient depend on C1 and 2 but not on C2 or 2. Why is such a result to be expected?arrow_forwardIf a car has a suspension system with a force constant of 5.00104 N/m , how much energy must the car’s shocks remove to dampen an oscillation starting with a maximum displacement of 0.0750 m?arrow_forward
- Check Your Understanding An engineer builds two simple pendulums. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums will differ if the bobs are both displaced by 12°.arrow_forwardShow that angular frequency of a physical pendulum phy=mgrCM/I (Eq. 16.33) equals the angular frequency of a simple pendulum smp=g/, (Eq. 16.29) in the case of a particle at the end of a string of length .arrow_forwardShow that the time rate of change of mechanical energy for a damped, undriven oscillator is given by dE/dt = bv2 and hence is always negative. To do so, differentiate the expression for the mechanical energy of an oscillator, E=12mv2+12kx2, and use Equation 12.28.arrow_forward
- Check Your Understanding Identify one way you could decrease the maximum velocity of a simple harmonic oscillator.arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forwardDetermine the angular frequency of oscillation of a thin, uniform, vertical rod of mass m and length L pivoted at the point O and connected to two springs (Fig. P16.78). The combined spring constant of the springs is k(k = k1 + k2), and the masses of the springs are negligible. Use the small-angle approximation (sin ). FIGURE P16.78arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY